
progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page1 / 102

ProgressXML
Version 1.3 / Revision 2024-01-28

An innovative data transmission concept for precasters and reinforcers

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page2 / 102

Edited by:
PROGRESS GROUP

In cooperation with:

VeriCon Ingenieurs BV & VeriCon Solutions BV, Veldhoven (NL)
Precast Software Engineering GmbH, Salzburg (A)
Gesys GmbH & Co. KG, Kißlegg (D)
IDAT GmbH, Darmstadt (D)
Softbauware GmbH, Langen (D)

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page3 / 102

Index:

1 GENERAL ... 6
1.1 Scope of application ... 6
1.2 Default values ... 6
1.3 Character encoding .. 7
1.4 Versioning .. 7
1.5 Compatibility with UNICAM .. 8
1.6 PXML Delegate Files and PXML Include Files ... 9

2 STRUCTURE OVERVIEW .. 14
3 DETAIL SPECIFICATIONS .. 21

3.1 Global ID .. 21
3.1.1 Unambiguity of the GlobalID ... 21
3.1.2 Special case: GlobalID of DocInfo Table ... 21
3.1.3 Automatic generation of GlobalIDs ... 21
3.1.4 Late generation of GlobalIDs ... 22

3.2 DocInfo ... 22
3.2.1 GlobalID .. 22
3.2.2 Document Version ... 22
3.2.3 Comment .. 22
3.2.4 ConvertConventions ... 22
3.2.5 Mode .. 23

3.3 Order .. 24
3.3.1 Order Information .. 24
3.3.2 Import Source Information ... 25
3.3.3 ApplicationName, ApplicationGUID, ApplicationVersion .. 25

3.4 OrderInfo, OrderInfoVal .. 26
3.5 Product (Element) .. 26

3.5.1 ElementNo ... 27
3.5.2 ProductType ... 27
3.5.3 PieceCount ... 28
3.5.4 Data transfer for double walls: TurnWidth, TotalThickness, DoubleWallsGap 28
3.5.5 Comment .. 29
3.5.6 RotationPosition ... 29
3.5.7 Stacking Information .. 29
3.5.8 Project Coordinates .. 30
3.5.9 Supplementary Product Information .. 31

3.6 ElementInfo .. 31
3.6.1 Fields of ElementInfo entries ... 31
3.6.2 Predefined ElementInfo types .. 32
3.6.3 ElemInfoVal ... 35

3.7 Slab (Element Part) .. 35
3.7.1 PartType ... 35
3.7.2 Geometric Slab Placement (X/Y/Z, RotX/Y/Z) ... 35
3.7.3 Slab Production Directives (ProdX/Y/Z, ProdRotX/Y/Z) .. 36
3.7.4 Geometric Placement and Production Directives for Double Walls ... 36
3.7.5 Various Slab Information ... 37
3.7.6 Multi-Layer Elements .. 37
3.7.7 Legacy Slab Fields ... 37
3.7.8 Simplified geometry representation ... 38

3.8 Outline .. 39
3.8.1 Geometric Outline Placement (X, Y, Z, RotX, RotY, RotZ) .. 39
3.8.2 Height ... 39
3.8.3 Name .. 39
3.8.4 GenericInfo .. 39
3.8.5 MountingInstruction (only for Mountpart) .. 39
3.8.6 MountPartType, MountPartArticle (only for Mountpart) ... 40
3.8.7 MountPartProperties (only for Mountpart) .. 40
3.8.8 Concrete Properties (only for lots) ... 40
3.8.9 Layer .. 40
3.8.10 ObjectID ... 41
3.8.11 Shape, SVertex ... 41

3.9 Steel .. 46
3.9.1 Geometric Steel Placement (X, Y, Z, RotX, RotY, RotZ) .. 47
3.9.2 ToTurn (only for steel mesh).. 47
3.9.3 StopOnTurningSide (only for steel mesh) .. 47

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page4 / 102

3.9.4 Name .. 47
3.9.5 MeshType .. 47
3.9.6 WeldingDensity (only for steel mesh) .. 48
3.9.7 BorderStrength ... 48
3.9.8 Generic Steel Info .. 48
3.9.9 Steel Production Directices (ProdX/Y/Z, ProdRotX/Y/Z) ... 48
3.9.10 Layer .. 49
3.9.11 ObjectID ... 50

3.10 Bar ... 50
3.10.1 ShapeMode... 50

3.10.1.1 ShapeMode "realistic" ... 50
3.10.1.2 ShapeMode "schematic" .. 50
3.10.1.3 ShapeMode "polygonal" .. 51
3.10.1.4 Automatic determination of ShapeMode and mixed representation .. 52

3.10.2 ReinforcementType (reinforcement layers) .. 52
3.10.2.1 Definition of reinforcement type ... 52
3.10.2.2 How to set the reinforcement types ... 53
3.10.2.3 Upper reinforcement layers ... 53

3.10.3 SteelQuality .. 54
3.10.4 PieceCount, Diameter, X, Y, Z .. 54
3.10.5 RotZ ... 54
3.10.6 ArticleNo .. 55
3.10.7 NoAutoProd ... 55
3.10.8 ExtIronWeight .. 55
3.10.9 Bin .. 55
3.10.10 Pos .. 55
3.10.11 Note .. 55
3.10.12 Machine .. 55
3.10.13 BendingDevice.. 55
3.10.14 Spacer ... 56

3.10.14.1 Type ... 56
3.10.14.2 Position .. 56

3.10.15 WeldingPoint .. 56
3.10.15.1 WeldingOutput .. 56
3.10.15.2 Position .. 56
3.10.15.3 WeldingPointType, WeldingPrgNo ... 56
3.10.15.4 GroupID ... 57

3.10.16 Segment .. 58
3.10.16.1 Segment-Orientation (RotX, BendY) .. 58
3.10.16.2 Segment-Length (L)... 58
3.10.16.3 Bending-Radius (R) ... 58
3.10.16.4 External dimensions .. 60
3.10.16.5 External length of segment .. 61
3.10.16.6 Height and width of segment ... 61
3.10.16.7 Rules for computing external dimensions .. 61
3.10.16.8 Conventional external dimensions ... 62
3.10.16.9 General computations for the bending radius .. 62
3.10.16.10 Arcs and spirals in traditional "spiral form" .. 62
3.10.16.11 Arcs in ordinary PXML form .. 63
3.10.16.12 General computations for coordinate rotation ... 66
3.10.16.13 Conversion from or to UNICAM .. 68
3.10.16.14 Conversion from or to BVBS-BF2D ... 70
3.10.16.15 Conversion from or to BVBS-BF3D ... 70
3.10.16.16 Conversion from or to 3D-BF2D .. 71

3.10.17 Canonical Bar representation .. 72
3.11 Girder .. 74

3.11.1 PieceCount, X, Y, Z, GirderName, Length, AngleToX ... 74
3.11.2 NoAutoProd ... 74
3.11.3 Height, TopExcess, BottomExcess ... 74
3.11.4 Weight, TopFlangeDiameter, BottomFlangeDiameter ... 74
3.11.5 GirderType ... 74
3.11.6 MountingType .. 75
3.11.7 ArticleNo .. 75
3.11.8 Machine .. 75
3.11.9 Period, PeriodOffset ... 75
3.11.10 Width .. 75
3.11.11 AnchorBar ... 75
3.11.12 GirderExt .. 75

3.11.12.1 Type = splicePos .. 76

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page5 / 102

3.11.12.2 Type = FixingPos... 76
3.11.12.3 Type = GirderGripPos ... 76
3.11.12.4 Type = MeshGripPos ... 76
3.11.12.5 Type = SupportPos .. 76
3.11.12.6 Export to UNICAM ... 76

3.11.13 Section .. 76
3.11.13.1 Fields in the Section table .. 76
3.11.13.2 Assignment of the Section data.. 77
Calculations for girder shapes ... 77

3.12 Alloc ... 79
3.12.1 GuidingBar ... 79
3.12.2 Determination of direction excluding GuidingBar ... 79
3.12.3 Region .. 80

3.13 SteelExt .. 81
3.14 Feedback .. 82

3.14.1 Production Test Service (PTS) ... 82
3.14.2 Machine Return .. 83
3.14.3 Fields of the Feedback Block ... 83

3.14.3.1 Feedback attributes .. 83
3.14.3.2 Feedback fields .. 83

3.14.4 FbVal ... 84
3.14.4.1 Wire information ... 88
3.14.4.2 Welding point information... 88
3.14.4.3 Spacer information .. 88

3.14.5 Examples of PTS messages .. 88
3.14.6 Examples of Machine Return messages ... 90
3.14.7 Examples of FbVal entries ... 91

3.14.7.1 Example Bar .. 91
3.14.7.2 Example Steel .. 91
3.14.7.3 Example Slab ... 91
3.14.7.4 Example Girder.. 92

3.14.8 Types of communication of PTS .. 92
3.14.8.1 Communication on file basis ... 92
3.14.8.2 Communication via web services .. 93

3.14.9 Types of communication of Machine Return ... 94
3.14.9.1 Communication on file basis ... 94
3.14.9.2 Communication via web services .. 94

3.14.10 Parallel PTS servers and series of PTS servers ... 94
3.14.11 Filter, classify and sort PTS feedback messages ... 95

4 PROPOSALS FOR FUTURE EXTENSIONS .. 96
5 VERSION HISTORY ... 97

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page6 / 102

1 General

1.1 Scope of application

The data format of progressXML (hereinafter also referred to as PXML) is a data format based on

XML for the generation of data and production control and scheduling at precasting plants.

In particular, there are two different areas of application:

• interface between systems of different manufacturers →Standard Tags, and

• internal (proprietary) storage of data of CAD/CAM systems →Internal Tags.

This document has been devised to describe the Standard Tags. These are those fields of the PXML

format that are bindingly defined and that may be used for data interchange between different systems.

It is not necessary to use all the Standard Tags, but one should try to exclusively use these Standard

Tags for data interchange only.

In addition to these Standard Tags, any software producer may define or use any kind of proprietary

Internal Tags for its internal data representation. These should simply be ignored whenever data are

interchanged between different systems.

It is recommended to always put a prefix I_ in front of any internal tags; this will help avoid name

clashes with standard tags that may be introduced at a later time (standard tags never open with I_)1.

From the above remarks, we derive the following requirements on cross-system PXML import

modules:

a) Exclusively Standard Tags will be read.

b) The absence of Standard Tags must be tolerated (default values are accepted, see Section 1.2).

c) The PXML file may have any number of additional tags (viz. internal tags) that will be simply

ignored for import.

1.2 Default values

Default values will be attained where a tag is missing. These default values are consistently specified

for each data type:

• string: ""

• double: 0

• bool: false

For other than the above data types, default values should never be attained. This is specifically true

for integer values: as these may often include IDs that may also be 0, there is no default value rule

in place for integers.

1 It is a variant of this convention to use the prefixes of I_P_ or I_V_: here, the former are used for persistent internal

tags, viz. those tags that are also written on file, and the latter are use for volatile internal tags that are not written on file

and that would generally contain redundant information only (cache fields).

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page7 / 102

1.3 Character encoding

It is recommended to use UTF-8 encoding in PXML files. This will help avoid many problems or

complications respectively.

However, as this is an XML file, selection of the UTF-8 code is not mandatory, and exclusively the

encoding rules for XML documents will apply only:

a) If there is no encoding declaration2 and no BOM (Byte Order Mark), this will be UTF-8.

b) For UTF-16 or UTF-32 encodings, a respective BOM entry is mandatory. An encoding

declaration is not stringently required, but is still recommended.

c) If an obsolete (viz. not Unicode-capable) encoding is used, an explicit encoding declaration

must be provided. This will typically be "iso-8859-1" or "windows-1252" for what is called

the standard "ANSI" Code.

1.4 Versioning

There are two version identifiers: Major Version and Minor Version. The combination of Major

Version /Minor Version coincides with the version identifier of this document.

Please note: These version identifiers merely relate to the standard tags only; if there is versioning

for internal tags, this must occur via an additional proprietary version identifier.

Major Version (Schema Version)

The Major Version is determined in the XML-Namespace. The namespace has the following format:
http://progress-m.com/ProgressXML/Version1

The Major Version will only be changed if the schema syntax changes in an incompatible manner.

Changes of the Major Version should be avoided whenever possible. A change of the Major Version

will normally only be necessary if the previous version is expected to be further extended in future

(at least temporarily), representation that way an independent branch of the specification.

Minor Version

The Minor Version is entered in the DocInfo block of data.

The various Minor Versions must be mutually compatible syntactically. That is to say, one version

may have tags that do not exist in the other version, or one and the same tag may have different

semantic meanings in different versions respectively; but the schema syntax must be compatible.

Example #1: an angle detail that originally was in degrees will be interpreted as a tenth-degree value

in a new version.

Example #2: an integer angle detail in an old version will not be used anymore; and a new tag with a

floating point angle detail will be introduced instead.

Please note: Supplements that are fully downward compatible may also be added within a

Minor Version. Typically, these are fields that have been additionally included in the PXML

standard.

2 Here, by Encoding Declaration we understand a header in the format of

<?xml version="1.0" encoding="iso-8859-1" ?>.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page8 / 102

1.5 Compatibility with UNICAM

Purpose

When defining the ProgressXML format, we have tried to achieve extensive compatibility with the

UNICAM CAD-CAM interface. More specifically, it should be possible for conversions of the type

 UNICAM →ProgressXML→ UNICAM

to get back the original file (apart from a few exceptions).

This requirement has made some elements, terms or structures being introduced into this specification

that actually seem rather irrational.

Where reference is made to the UNICAM documentation without quoting the version, as a general

rule, this will be meant to be a reference to versions 5.2 or 6.0 respectively of the UNICAM interface.

UNICAM elements not supported

Some elements of the UNICAM CAD-CAM interface have deliberately not been integrated in

PXML:

1) Actual quantity: will always be set to 0 for export to UNICAM.

2) End hook bending shapes: only free bending shapes will be supported; upon import from

UNICAM, end hook bending will be converted to free bending shapes.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page9 / 102

1.6 PXML Delegate Files and PXML Include Files

Production data is frequently provided by two distinct systems: a CAD system and an EPR system.

The CAD system provides geometrical data for the elements to be produces, while the ERP system

typically cares about header data like order numbers and delivery dates. The PXML Delegate File

mechanism is a technique that allows to merge information coming from those distinct systems into

one single PXML document.

The PXML Delegate File itself is typically generated by the ERP system. It therefore typically

contains order heading data, and optionally (with batch production) provides some target piece count

values, too. But this file doesn't specify any geometrical details about the elements to be produced.

Instead it "delegates" those geometrical details to an Include File that has to be provided by a CAD

system.

Syntactically, the Delegate File is just an ordinary PXML file. But instead of enclosing geometrical

data directly, it contains Include directives that specifies Include File paths3. The Include Files (CAD

files) are again ordinary PXML files4. The example listed below demonstrates how one Delegate File

is merged with two Include Files resulting in a single complete PXML file5:

Delegate File \\SrvXY\Examples\delegate.pxml:
<?xml version="1.0" encoding="utf-8"?>

<PXML_Document xmlns="http://progress-m.com/ProgressXML/Version1">

 <DocInfo>

 <MajorVersion>1</MajorVersion>

 <MinorVersion>3</MinorVersion>

 </DocInfo>

 <Order>

 <OrderNo>100000000041</OrderNo>

 <DeliveryDate>2013-11-05T10:50:07+01:00</DeliveryDate>

 <Product>

 <ElementNo></ElementNo> <!--Ignore3-->

 <PieceCount>3</PieceCount>

 <Include>\\SrvXY\Examples\CADFiles\abcd1.pxml</Include>

 </Product>

 <Product>

 <PieceCount>5</PieceCount>

 <Include>CADFiles\abcd2.pxml</Include>

 <Slab>

 <X>600</X>

 </Slab>

 </Product>

 </Order>

</PXML_Document>

3 The path to an Include File can be either absolute, or relative to the directory in which the Delegate File resides.
4 Include Files are sometimes provided in other formats, too (e.g. UNICAM or BVBS); such files have to be converted

into PXML when being imported.
5 All items marked with "Ignore" in the listings have been added to the example for definition purposes only. This

items should not be present at all in a real world example.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page10 / 102

CAD File \\SrvXY\Examples\CADFiles\abcd1.pxml:
<?xml version="1.0" encoding="utf-8"?>

<PXML_Document xmlns="http://progress-m.com/ProgressXML/Version1">

 <DocInfo>

 <MajorVersion>1</MajorVersion>

 <MinorVersion>3</MinorVersion>

 </DocInfo>

 <Order>

 <Component>C1</Component>

 <Product>

 <ElementNo>E1</ElementNo>

 <ProductType>DW</ProductType>

 <Slab>

 <PartType>01</PartType>

 </Slab>

 </Product>

 </Order>

</PXML_Document>

CAD File \\SrvXY\Examples\CADFiles\abcd2.pxml:
<?xml version="1.0" encoding="utf-8"?>

<PXML_Document xmlns="http://progress-m.com/ProgressXML/Version1">

 <DocInfo>

 <MajorVersion>1</MajorVersion>

 <MinorVersion>3</MinorVersion>

 </DocInfo>

 <Order> <!--Ignore5-->

 </Order>

 <Order>

 <OrderNo>aa2</OrderNo> <!--Ignore1-->

 <Component>C2</Component> <!--Ignore6-->

 <Product>

 <ElementNo>E2</ElementNo>

 <ProductType>DW</ProductType>

 <PieceCount>1</PieceCount> <!--Ignore4-->

 <Slab>

 <PartType>01</PartType>

 </Slab>

 </Product>

 <Product> <!--Ignore2-->

 <ElementNo>E3</ElementNo>

 </Product>

 </Order>

 <Order>

 <Product> <!--Ignore2-->

 <ElementNo>E5</ElementNo>

 </Product>

 </Order>

</PXML_Document>

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page11 / 102

Resulting merged File:

<?xml version="1.0" encoding="utf-8"?>

<PXML_Document xmlns="http://progress-m.com/ProgressXML/Version1">

 <DocInfo>

 <MajorVersion>1</MajorVersion>

 <MinorVersion>3</MinorVersion>

 </DocInfo>

 <Order>

 <OrderNo>100000000041</OrderNo>

 <Component>C1</Component>

 <DeliveryDate>2013-11-05T10:50:07+01:00</DeliveryDate>

 <Product>

 <ElementNo>E1</ElementNo>

 <ProductType>DW</ProductType>

 <PieceCount>3</PieceCount>

 <Slab>

 <PartType>01</PartType>

 </Slab>

 </Product>

 <Product>

 <ElementNo>E2</ElementNo>

 <ProductType>DW</ProductType>

 <PieceCount>5</PieceCount>

 <Slab>

 <X>600</X>

 </Slab>

 <Slab>

 <PartType>01</PartType>

 </Slab>

 </Product>

 </Order>

</PXML_Document>

The Include integration is done according the following rules:

a) An Include directive can, in theory, be present on all levels of the PXML hierarchy. But the

most common usage is to put Include operations exclusively on Product level (as in the

example listed above). The hierarchical level of the Include directive will herein be called

Include Level.

b) All Include File items that are hierarchically above or on same level as Include Level have to

be ignored if they are already set in the original Delegate file (see "Ignore1" in the example)

or already set by a previously included Include file (see "Ignore6" in the example). See

"Ignore3" and "Ignore4" for some more examples. Empty strings are considered as null values

in this circumstances

c) If the Include File has more than one object on Include Level, only the first matching Object

is considered (see "Ignore2" in the example).

Besides the simple Include directive as mentioned so far, a complex Include directive may be

specified as follows:

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page12 / 102

<?xml version="1.0"?>

<Include>

 <FileName>\\SrvXY\CADFiles\abcd1.pxml</FileName>

 <Filter>

 <IncludeFilter>

 <DataTableName>Slab</DataTableName>

 <DataColumnName>PartType</DataColumnName>

 <Condition>\s*01\s*</Condition> <!--RegEx condition-->

 </IncludeFilter>

 <IncludeFilter>

 <DataTableName>Steel</DataTableName>

 <DataColumnName>Name</DataColumnName>

 <Condition>\s*cageXy\s*</Condition> <!--RegEx condition-->

 </IncludeFilter>

 </Filter>

</Include>

This complex Include specification has to be embedded into the string field as follows:

<?xml version="1.0" encoding="utf-8"?>

<PXML_Document xmlns="http://progress-m.com/ProgressXML/Version1">

 <DocInfo>

 <MajorVersion>1</MajorVersion>

 <MinorVersion>3</MinorVersion>

 </DocInfo>

 <Order>

 <OrderNo>100000000041</OrderNo>

 <Product>

 <PieceCount>3</PieceCount>

 <Slab>

 <Steel>

 <Include>

<?xml version="1.0"?>

<Include>

 <FileName>\\SrvXY\CADFiles\abcd1.pxml</FileName>

 <Filter>

 <IncludeFilter>

 <DataTableName>Slab</DataTableName>

 <DataColumnName>PartType</DataColumnName>

 <Condition>\s*01\s*</Condition>

 </IncludeFilter>

 <IncludeFilter>

 <DataTableName>Steel</DataTableName>

 <DataColumnName>Name</DataColumnName>

 <Condition>\s*cageXy\s*</Condition>

 </IncludeFilter>

 </Filter>

</Include>

 </Include>

 </Steel>

 </Slab>

 </Product>

 </Order>

</PXML_Document>

This example includes the first Steel block that satisfies the condition of having the name “cageXY”

and being part of a first half slab.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page13 / 102

UNICAM Delegate File

A UNICAM file can also be interpreted as a delegate file (starting from UNICAM version 6.0).

The SLABDATE info fields 1 to 4 are used here:

Info1: contains the delegate file marker, namely the fixed text "#include

Info2+Info3+Info4: contains the path to the PXML file (the path is formed by binding these 3 fields together, whereby

the spaces at the end of each of these fields are cut away).

The path specification can contain the following macros:

<A>: Order name (from line 3 of the HEADER)

<E>: Element name

<P>: Project (line 4 of the HEADER)

<K>: Customer (line 12 of the HEADER)

An example of the info lines would be as follows:

Info1: #include

Info2: \\srvXY\CAD\

Info3: <K>\<P>\

Info4: <A>_<E>.PXML

The UNICAM delegate file can also contain a "rotation angle of the element" (SLABDATE, line 4, position 55-57 – for

version 6.0). This rotation can now have already been carried out in CAD, or it can be specified subsequently by the

control system. Therefore, this angle, minus the angle from Product.RotationPosition, must be used as the rotation request

on merging. I.e. when creating the merged file, the element must be rotated by the angle of the mentioned angle difference.

The rotation value from the UNICAM delegate file must then be used as the new value for Product.RotationPosition.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page14 / 102

2 Structure overview

The following representation describes the structure of the PXML file. Details regarding the various

fields are provided further down.

The figures in red on the right specify how often an entry may be made or has to be made respectively:

• 1 = precisely once

• 0,1 = 0 or once

• >=1 = at least once

• n = any number of times (including 0)

The length of the character string is basically arbitrary. Upon export to UNICAM, however, the

character strings will be reduced to a maximum length, or will be filled with blank characters to reach

a certain length respectively.

The text-items shown here (e.g. aaaaaaaa) are mere examples. Unless stated otherwise, all texts are

arbitrary alphanumerical character strings; however, please note that some of these free texts will

have to be converted to numerical values for UNICAM export. Those values that are already

numerical in the PXML definition will be annotated in the Table with Int, Bool, or Double.

<PXML_Document> 1

 <DocInfo GlobalID="aaa"> 1

 <MajorVersion>1</MajorVersion> Int 1

 <MinorVersion>3</MinorVersion> Int 1

 <Comment>aaaaaaaaaaaaa</Comment> 0,1

 <ConvertConventions>aaa#bbb#ccc</ConvertConventions> 0,1

 <Mode> n

 <ID>aaaaa</ID> 1

 <Val>true</Val> 0,1

 </Mode>

 </DocInfo>

 <Order GlobalID="aaa"> n

 <OrderNo>aaaaaaaa</OrderNo> 0,1

 <Structure>cccc</Structure> 0,1

 <Building>cccc</Building> 0,1

 <Storey>cccc</Storey> 0,1

 <SubStorey>cccc</SubStorey> 0,1

 <Component>bbbbb</Component> 0,1

 <DrawingNo>dddddd</DrawingNo> 0,1

 <DrawingDate>dd.mm.yyyy</DrawingDate> 0,1

 <DrawingRevision>ee</DrawingRevision> 0,1

 <DrawingAuthor>aaaaaaaaaaaaaaaaaaa</DrawingAuthor> 0,1

 <ErpProjectUnit>dddddd</ErpProjectUnit> 0,1

 <DeliveryDate>2010-04-16T11:46:48.933+02:00</DeliveryDate> 0,1

 <GenericOrderInfo01>aaaaaaaaaaaaaaaaaaaa</GenericOrderInfo01> 0,1

 : : : : 0,1

 <GenericOrderInfo20>aaaaaaaaaaaaaaaaaaaa</GenericOrderInfo20> 0,1

 <Comment>aaaaaaaaaaaaaaaaaaaa</Comment> 0,1

 <OrderArea>1234.5</OrderArea> Double 0,1

 <ImportSource>aaaaaaaaaaaaaaaaaaaa</ImportSource> 0,1

 <ImportSourceType>aaaaaaaaaaaaaaaaaaaa</ImportSourceType> 0,1

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page15 / 102

 <ApplicationName>aaaaaaaaaaaaaaaaaaaa</ApplicationName> 0,1

 <ApplicationGUID>aaaaaaaaaaaaaaaaaaaa</ApplicationGUID> 0,1

 <ApplicationVersion>aaaaaaaaaaaaaaaaaaaa</ApplicationVersion> 0,1

 <OrderInfo Type="AccountingPosition" GlobalID="aaa"> n

 <Code>aaaaa</Code> 0,1

 <OrderInfoVal Type=”aa” V=”bb” U="mm" Culture="en"/> n

 </OrderInfo>

 <Product GlobalID="aaa"> n

 <ElementNo>111</ElementNo> 0,1

 <ProductType>11</ProductType> 0,1

 <TotalThickness>6666</TotalThickness> Double 0,1

 <DoubleWallsGap>777</DoubleWallsGap> Double 0,1

 <PieceCount>1111</PieceCount> Int 0,1

 <TurnWidth>3500</TurnWidth> Double 0,1

 <Comment>aaaaaaaaaa</Comment> 0,1

 <RotationPosition>111</RotationPosition> Double 0,1

 <StackNo>111</StackNo> 0,1

 <StackID>111</StackID> 0,1

 <StackingSequence>111</StackingSequence> 0,1

 <StackingLevel>111</StackingLevel> 0,1

 <StackingX>11111</StackingX> Double 0,1

 <StackingY>11111</StackingY> Double 0,1

 <StackingZ>11111</StackingZ> Double 0,1

 <StackingAngle>111</StackingAngle> Double 0,1

 <StackingRotY>111</StackingRotY> Double 0,1

 <StackingRotX>111</StackingRotX> Double 0,1

 <P1X>111111</P1X> Double 0,1

 <P1Y>111111</P1Y> Double 0,1

 <P1Z>111111</P1Z> Double 0,1

 <P2X>111111</P2X> Double 0,1

 <P2Y>111111</P2Y> Double 0,1

 <P2Z>111111</P2Z> Double 0,1

 <P3X>111111</P3X> Double 0,1

 <P3Y>111111</P3Y> Double 0,1

 <P3Z>111111</P3Z> Double 0,1

 <AdditionInfo>aaaa</AdditionInfo> 0,1

 <UnloadingInfo>aaaa</UnloadingInfo> 0,1

 <TransportInfo>aaaa</TransportInfo> 0,1

 <ItemPosition>aaaa@bbbb@cccc@dddd</ItemPosition> 0,1

 <ElementInfo Type="AccArea" Inventory=true GlobalID="aaa"> n

 <Code>aaaaaaa</Code> 0,1

 <Description>aaaaaaa</Description> 0,1

 <ObjectID>aaaaaaa</ObjectID> 0,1

 <PieceCount>22</PieceCount> Int 0,1

 <Val1>123.4</Val1> Double 0,1

 <Val2>-987.2</Val2> Double 0,1

 <Unit>m³</Unit> 0,1

 <Details>aaaaaaa</Details> 0,1

 <ElemInfoVal Type=”Width” V=”225.3”/> n

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page16 / 102

 </ElementInfo>

 <Slab GlobalID="aaa"> n

(Legacy) <SlabNo>111</SlabNo> 0,1

 <PartType>11</PartType> 0,1

(Legacy) <ProductAddition>44</ProductAddition> 0,1

 <ProductionWay>aa</ProductionWay> 0,1

(Legacy) <NumberOfMeansOfTransport>666</NumberOfMeansOfTransport> 0,1

(Legacy) <TransportSequence>777</TransportSequence> 0,1

(Legacy) <PileLevel>888</PileLevel> 0,1

(Legacy) <TypeOfUnloading>99</TypeOfUnloading> 0,1

(Legacy) <MeansOfTransport>00</MeansOfTransport> 0,1

 <ExpositionClass>aaaaaaa</ExpositionClass> 0,1

 <SlabArea>11.111</SlabArea> Double 0,1

 <SlabWeight>55555.5</SlabWeight> Double 0,1

 <ProductionThickness>2222</ProductionThickness> Double 0,1

 <MaxLength>11111</MaxLength> Double 0,1

 <MaxWidth>22222</MaxWidth> Double 0,1

 <IronProjectionLeft>±3333</IronProjectionLeft> Double 0,1

 <IronProjectionRight>±4444</IronProjectionRight> Double 0,1

 <IronProjectionBottom>±5555</IronProjectionBottom> Double 0,1

 <IronProjectionTop>±6666</IronProjectionTop> Double 0,1

 <X>111111</X> Double 0,1

 <Y>222222</Y> Double 0,1

 <Z>222222</Z> Double 0,1

 <RotX>111111</RotX> Double 0,1

 <RotY>222222</RotY> Double 0,1

 <RotZ>222222</RotZ> Double 0,1

 <ProdX>111111</ProdX> Double 0,1

 <ProdY>222222</ProdY> Double 0,1

 <ProdZ>222222</ProdZ> Double 0,1

 <ProdRotX>111111</ProdRotX> Double 0,1

 <ProdRotY>222222</ProdRotY> Double 0,1

 <ProdRotZ>222222</ProdRotZ> Double 0,1

(Legacy) <OrderPosition>aaaaaaaa</OrderPosition> 0,1

(Legacy) <ProductGroup>bbbb</ProductGroup> 0,1

(Legacy) <SlabType>33</SlabType> 0,1

(Legacy) <ItemDesignation>c...c</ItemDesignation> 0,1

(Legacy) <ProjectCoordinates>111111 222222…</ProjectCoordinates> 0,1

(Legacy) <PositionInPileX>111111</PositionInPileX> Double 0,1

(Legacy) <PositionInPileY>111111</PositionInPileY> Double 0,1

(Legacy) <PositionInPileZ>111111</PositionInPileZ> Double 0,1

(Legacy) <AngleInPile>111111</AngleInPile> Double 0,1

 <GenericInfo01>aaaaaaa…aaaaaa</GenericInfo01> 0,1

 <GenericInfo02>aaaaaaa…aaaaaa</GenericInfo02> 0,1

 <GenericInfo03>aaaaaaa…aaaaaa</GenericInfo03> 0,1

 <GenericInfo04>aaaaaaa…aaaaaa</GenericInfo04> 0,1

 <ReforcemInfo></ReforcemInfo> 0,1

 <Outline Type="lot" GlobalID="aaa"> n

 <X>22222</X> Double 0,1

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page17 / 102

 <Y>22222</Y> Double 0,1

 <Z>22222</Z> Double 0,1

 <RotX>22222</RotX> Double 0,1

 <RotY>22222</RotY> Double 0,1

 <RotZ>22222</RotZ> Double 0,1

 <Height>22222</Height> Double 0,1

 <Name>bbbb...bbbb</Name> 0,1

 <GenericInfo01>bbbb...bbbb</GenericInfo01> 0,1

 <GenericInfo02>bbbb...bbbb</GenericInfo02> 0,1

 <MountingInstruction>2</MountingInstruction> 0,1

 <MountPartType>33</MountPartType> 0,1

 <MountPartArticle>aaaaaaaaaa</MountPartArticle> 0,1

 <MountPartIronProjection>333</MountPartIronProjection> Double 0,1

 <MountPartDirection>±555</MountPartDirection> Double 0,1

 <MountPartLength>66666</MountPartLength> Double 0,1

 <MountPartWidth>77777</MountPartWidth> Double 0,1

 <ConcretingMode>aa</ConcretingMode> 0,1

 <ConcreteQuality>aaaaaaaa</ConcreteQuality> 0,1

 <UnitWeight>4.444</UnitWeight> Double 0,1

 <Volume>33.333</Volume> Double 0,1

 <Layer>aaa</Layer> 0,1

 <ObjectID>aaaaaa</ObjectID> 0,1

 <Shape GlobalID="aaa"> n

 <Cutout>false</Cutout> Bool 0,1

 <RefHeight>33.333</RefHeight> Double 0,1

 <SVertexGlobalID="aaa"> n

 <X>11111</X> Double 0,1

 <Y>22222</Y> Double 0,1

 <Bulge>33333</Bulge> Double 0,1

 <LineAttribute>aaaa</LineAttribute> 0,1

 <Profile>-10 10|0 0</Profile> 0,1

 <DX>22222</DX> Double 0,1

 <DY>22222</DY> Double 0,1

 </SVertex>

 </Shape>

 </Outline>

 <Steel Type="mesh" GlobalID="aaa"> n

 <X>22222</X> Double 0,1

 <Y>22222</Y> Double 0,1

 <Z>22222</Z> Double 0,1

 <RotX>22222</RotX> Double 0,1

 <RotY>22222</RotY> Double 0,1

 <RotZ>22222</RotZ> Double 0,1

 <ToTurn>true</ToTurn> Bool 0,1

 <StopOnTurningSide>true</StopOnTurningSide> Bool 0,1

 <Name>2</Name> 0,1

 <GenericInfo01>aaa…aaa</GenericInfo01> 0,1

 : : : : 0,1

 <GenericInfo06>aaa…aaa</GenericInfo06> 0,1

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page18 / 102

 <MeshType>2</MeshType> 0,1

 <WeldingDensity>100</WeldingDensity> Int 0,1

 <BorderStrength>2</BorderStrength> Int 0,1

 <ProdX>±123</ProdX> Double 0,1

 <ProdY>±123</ProdY> Double 0,1

 <ProdZ>±123</ProdZ> Double 0,1

 <ProdRotX>±123</ProdRotX> Double 0,1

 <ProdRotY>±123</ProdRotY> Double 0,1

 <ProdRotZ>±123</ProdRotZ> Double 0,1

 <Layer>aaa</Layer> 0,1

 <ObjectID>aaa</ObjectID> 0,1

 <Bar GlobalID="aaa"> n

 <ShapeMode>realistic</ShapeMode> 0,1

 <ReinforcementType>3</ReinforcementType> 0,1

 <SteelQuality>aaa</SteelQuality> 0,1

 <PieceCount>55555</PieceCount> Int 0,1

 <Diameter>666</Diameter> Double 0,1

 <X>±88888</X> Double 0,1

 <Y>±99999</Y> Double 0,1

 <Z>±77777</Z> Double 0,1

 <RotZ>±123</RotZ> Double 0,1

 <ArticleNo>bbbbbbbbbb</ArticleNo> 0,1

 <NoAutoProd>false</NoAutoProd> Bool 0,1

 <ExtIronWeight>444.444</ExtIronWeight> Double 0,1

 <Bin>123</Bin> 0,1

 <Pos>aaa</Pos> 0,1

 <Note>aaa</Note> 0,1

 <Machine>aaa</Machine> 0,1

 <BendingDevice>1</BendingDevice> 0,1

 <Spacer GlobalID="aaa"> n

 <Type>222</Type> Int 0,1

 <Position>33333</Position> Double 0,1

 </Spacer>

 <WeldingPointGlobalID="aaa"> n

 <WeldingOutput>77</WeldingOutput> Double 0,1

 <Position>33333</Position> Double 0,1

 <WeldingPointType>111</WeldingPointType> Int 0,1

 <WeldingPrgNo>222</WeldingPrgNo> Int 0,1

 <GroupID>222</GroupID> 0,1

 </WeldingPoint>

 <Segment Type="normal" GlobalID="aaa"> n

 <RotX>±123</RotX> Double 0,1

 <BendY>±123</BendY> Double 0,1

 <L>33333</L> Double 0,1

 <R>22</R> Double 0,1

 </Segment>

 </Bar>

 <Girder GlobalID="aaa"> n

 <PieceCount>55555</PieceCount> Int 0,1

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page19 / 102

 <X>±88888</X> Double 0,1

 <Y>±99999</Y> Double 0,1

 <Z>±77777</Z> Double 0,1

 <GirderName>aaaaaaaaaa</GirderName> 0,1

 <Length>55555</Length> Double 0,1

 <AngleToX>±999</AngleToX> Double 0,1

 <NoAutoProd>true</NoAutoProd> Bool 0,1

 <Height>222</Height> Double 0,1

 <TopExcess>222</TopExcess> Double 0,1

 <BottomExcess>222</BottomExcess> Double 0,1

 <Weight>33.333</Weight> Double 0,1

 <TopFlangeDiameter>44</TopFlangeDiameter> Double 0,1

 <BottomFlangeDiameter>44</BottomFlangeDiameter> Double 0,1

 <GirderType>2</GirderType> Int 0,1

 <MountingType>1</MountingType> Int 0,1

 <ArticleNo>aaa</ArticleNo> 0,1

 <Machine>aaa</Machine> 0,1

 <Period>000</Period> Double 0,1

 <PeriodOffset>111</PeriodOffset> Double 0,1

 <Width>80</Width> Double 0,1

 <AnchorBarGlobalID="aaa"> n

 <Type>222</Type> Int 0,1

 <Length>111</Length> Double 0,1

 <Position>33333</Position> Double 0,1

 </AnchorBar>

 <GirderExt Type="SplicePos" GlobalID="aaa"> n

 <Position>33333</Position> Double 0,1

 <Flags>0</Flags> Int 0,1

 <Val0>33333</Val0> Double 0,1

 <Val1>33333</Val1> Double 0,1

 <Val2>33333</Val2> Double 0,1

 <Val3>33333</Val3> Double 0,1

 </GirderExt>

 <Section GlobalID="aaa"> n

 <L>195</L> Double 0,1

 <S>-100</S> Double 0,1

 <F>50</F> Double 0,1

 </Section>

 </Girder>

 <Alloc Type="Bar" GlobalID="aaa"> n

 <GuidingBar>2</GuidingBar> Int 0,1

 <Region GlobalID="aaa"> n

 <IntervalCount>5</IntervalCount> Int 0,1

 <Pitch>111</Pitch> Double 0,1

 <IncludeBegin>true</IncludeBegin> Bool 0,1

 <IncludeEnd>true</IncludeEnd> Bool 0,1

 <RefIndex>4</RefIndex> Int 0,1

 </Region>

 </Alloc>

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page20 / 102

 <SteelExt Type="Xyz" GlobalID="aaa"> n

 <Info>aaaaaaaaaa</Info> 0,1

 </SteelExt>

 </Steel>

 </Slab>

 </Product>

 </Order>

 <Feedback ItemType="Bar" GlobalID="aaa"> n

 <MessageType>error</MessageType> 0,1

 <Code>123ABC</Code> 0,1

 <InfoValue>123XYZ</InfoValue> 0,1

 <PieceCount>3</PieceCount> Int 0,1

 <MaterialType>16A</MaterialType> 0,1

 <MaterialBatch>12345@AR177228C</MaterialBatch> 0,1

 <MaterialWeight>12345</MaterialWeight> Double 0,1

 <ProdDate>2010-07-30T09:06:05+02:00</ProdDate> 0,1

 <Machine>aaa</Machine> 0,1

 <Description Culture="en" Text="aaaaaaaaaa"/> n

 <FbVal T=”OrdNo” V=”AA00048386”/> n

 </Feedback>

</PXML_Document>

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page21 / 102

3 Detail specifications

3.1 Global ID

Each PXML Table may have an attribute titled GlobalID to facilitate global identification of the

respective item. Here, "global" is to be understood as cross-system, viz. as opposed to intra-system

IDs that would be merely known within a subsystem only.

Typically, the GlobalID is assigned by the system that generates the data (viz. in the CAD or the

master computer respectively), and is then applied by the subsystems in order to be used for feedbacks

to the higher-ranking system.

Some systems use a numerical GlobalID, others use a string (such as a GUID string, for example).

However, similar to practically all PXML fields, it is also true for the GlobalID that its use is optional,

and it is thus possible to do without any GlobalID altogether, or to use the GlobalID in merely some

PXML Tables only.

3.1.1 Unambiguity of the GlobalID

The GlobalID should be unambiguous within any one item type, so for instance, two different Bar

items should have different GlobalIDs (this is not only true for 2 Bar items belonging to the same

Steel block, but also Bar items from different Steel blocks shall have different GlobalIDs). The

GlobalIDs of different item types (such as Bar or Girder, for example), on the other hand, may have

overlaps.

However, unambiguity of the GlobalID is not a definite rule of PXML, but merely a requirement of

the application, which may be more or less pronounced as a function of the specific application. Thus,

for a PTS query it may be sufficient if the GlobalIDs within any one query document are

unambiguous. For production feedback from machinery, however, you will typically need a more

universal unambiguity of the GlobalIDs. (PTS queries and production feedback will be explained in

more detail further below).

3.1.2 Special case: GlobalID of DocInfo Table

For the DocInfoTable, the GlobalID has a slightly modified meaning: here, it does not merely identify

the table entry (as there is no more than one DocInfotable entry), but rather the whole document.

3.1.3 Automatic generation of GlobalIDs

If the system generating the data does not deliver any GlobalID, the subsystem may generate this

identifier on its own to then provide purposeful feedback. Here, the following pattern shall be used:

 ParentItemGlobalID.ItemIndex

Here, "ParentItemGlobalID" is the GlobalID of the parent item immediately overlying, and

"ItemIndex" is the zero-based element index of the respective item within its immediate parent

environment. As Order items do not have a parent, merely an ItemIndex is used here (no prefix).

Example 1: A Bar item has the GlobalID "ABC"; here, the GlobalIDs can be generated for the

segments of this reinforcing bar as follows:

 "ABC.0"

 "ABC.1"

 "ABC.2"

 and so forth.

Example 2: All PXML items are without a GlobalID. Now, the following GlobalID can be

automatically generated for the fifth rebar in the third Order block:

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page22 / 102

 "2.0.0.0.4"

(Order index = 2, Product index = 0; Slab index = 0, Steel index = 0; Bar index = 4).

3.1.4 Late generation of GlobalIDs

Where a cross-system identification of items is necessary, GlobalIDs are helpful or even necessary.

In other cases, however, such IDs can be a hindrance because they introduce artificial differentiation

where this would not be necessary: If two PXML objects are identical in content, it can be software-

technically efficient to handle them using a common object; however, this optimization would be

thwarted by different GlobalIDs. If it is necessary to differentiate between the two objects from an

application perspective, it also makes sense to have different GlobalIDs. However, if no

differentiation is required from the application point of view, the GlobalIDs would introduce

differentiation in an artificial and disruptive way.

It therefore makes sense to generate GlobalIDs in the overall process only when they are actually

needed.

3.2 DocInfo

The DocInfo block must be there precisely once per document.

3.2.1 GlobalID

The GlobalID entry is optional and is used as identification of the whole document, especially in

regard to PTS feedback.

3.2.2 Document Version

The MajorVersion and MinorVersion denote the main version of the underlying PXML specification.

See section 1.4.

3.2.3 Comment

In the Comment field any comment be entered on the document. The Comment is optional, but should

be placed above all in PTS feedback documents to describe the state of the sending system

(identification of the system, software version, parameter version).

3.2.4 ConvertConventions

When, for some reason, a PXML file is not PXML-compliant, one can annotate the nonconformity in

the ConvertConventions filed. When importing such a file, the data can then be converted according

that information, in order to get a fully PXML-compliant data set.

If several conventions should be specified, they have to be separated by a # sign.

PXML-based systems work internally without considering the ConvertConventions. The

ConvertConventions are to be processed immediately when data is imported; after having carried out

the required conversions, the ConvertConventions field should be cleared.

Basically there are no ConvertConventions that must necessarily be accepted. The following

conventions are accepted often, though:

• SegmentsHaveOuterLen: Indicates, that the Segment.L values indicate the outer length of

the segments, and not (as required in PXML) the center dimensions.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page23 / 102

3.2.5 Mode

Additional information that would typically include processing instructions intended for the data

receiver may be specified via Mode entries.

Each Mode entry will be composed of an ID field that will define the meaning of the entry and of a

Val field that will hold the value.

The following Mode IDs are defined in the PXML standard6:

• ProdLayout: Possible values are "true" or "false".

This Mode instruction specifies whether or not the elements have already been arranged and

laid out ready for production.

For prefabricated component circulation systems, this means in detail: if ProdLayout=true

these are data that were arranged and laid out on production pallets, and if ProdLayout=false

these are CAD data the element coordinates of which have not as yet been aligned to

production pallets.

Please note: if ProdLayout=true the PXML document (viz. the file) will correspond to

precisely one production unit (such as one circulation pallet). That is to say, the data will be

"portioned" by production units such that the receiving system will know what elements will

go into one and the same production unit.

Please note regarding the PTS check: If ProdLayout=false the PTS server will check the

elements separately, thus ignoring their absolute position (here, the PTS server will assume

that the elements will be positioned in their ideal position later on while they will be

assigned to the pallets). However, the PTS server will accept the rotational orientation of

the elements as being fixed, viz. it will not try to assume the ideal rotational orientation

autonomously7.

• RequestedCulture: You can use one or several of these entries to specify what national

languages are of interest. Thus, it can be communicated to a PTS server which are the

languages in which the message texts are to be supplied, for example.

These entries must be specified through the ISO 639 Language Codes, optionally extended

by the ISO 3166 Country Codes (such as "en" or "en-US", for example). If several

languages are requested, the respective number of Mode entries must be specified

accordingly.

• EstimateProdTime: Possible values are "true" or "false".

This Mode directive instructs a PTS server whether or not to do a production time

computation.

This option is intended to facilitate that the production time simulation (which may require a

huge computational effort) will only be used if it is really required.

• EnableProduction: Possible values are "true" or "false".

This Mode directive declares that data is approved for production. This directive is used to

distinguish between final CAD data (and thus ready for production) and preliminary

versions of the same data.

6 In addition, each application is free to define its own additional Mode IDs for internal purposes only. These are then

to begin with "I_" such as to avoid conflicts with potential later extensions of the standard.
7 It is with intent that a different treatment is defined for the position offset and for the rotational orientation

respectively: the former will not be checked if ProdLayout=false, whereas the latter will always be checked. It would

be lacking in practical relevance to request that a CAD system ideally position the slabs from a production-technical

point of view when it creates a PTS request as this would rather be an essential task of the pallet assignment process.

On the other hand, it would not work to have the PTS server check out all possible rotational orientations

autonomously. This is because, on the one hand, the PTS server knows little about the practicability of the rotation of

the elements, and on the other hand there may be false PTS check results when systems are interlinked whereby

different sub-systems may assume different rotational orientations. (On principle, this argument could also be used for

the positioning offset, but here it is less relevant in practice).

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page24 / 102

• EnableReinforcement: Possible values are "true" or "false".

This Mode directive is similar to the EnableProduction directive, but restricts the approval

to reinforcement production. This directive is particularly useful in systems requiring a

longer lead time in reinforcement preparation. In such cases reinforcement production may

need to start before the final drawing approval is achieved.

• EnableProcurement: Possible values are "true" or "false".

This Mode directive is similar to the EnableProduction directive, but restricts the approval

to material procurement.

Example of Mode sections:

<?xml version="1.0" encoding="utf-8"?>

<PXML_Document xmlns="http://progress-m.com/ProgressXML/Version1">

 <DocInfo GlobalID="7C7E1FC5-0A46-48c5-A3B2-249D75B70BCF">

 <MajorVersion>1</MajorVersion>

 <MinorVersion>3</MinorVersion>

 <Mode>

 <ID>ProdLayout</ID>

 <Val>true</Val>

 </Mode>

 <Mode>

 <ID>RequestedCulture</ID>

 <Val>en</Val>

 </Mode>

 <Mode>

 <ID>RequestedCulture</ID>

 <Val>fr-BE</Val>

 </Mode>

 <Mode>

 <ID>EstimateProdTime</ID>

 <Val>false</Val>

 </Mode>

 </DocInfo>

</PXML_Document>

3.3 Order

The Order section may appear any number of times (or not at all). It holds production units with

mutually matching order information.

Please note: an Order section does not have to hold all the production units of a commission.

However, is must not hold production units for different commissions.

In the order section, basically, the information is stored which is independent of the “elementation”,

i.e. independent of how building parts are divided in precast-able elements. These data are therefore

typically independent of the details of the shop drawings describing the precast elements.

3.3.1 Order Information

OrderNo: order identifier.

Structure: Group of buildings, e.g. First row of a row house settlement.

Building: Single building.

Storey: description of storey.

Substorey: Section of a storey.

Component: component.

DrawingNo: drawing identifier.

DrawingDate: the date on which the drawing was generated or revised respectively.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page25 / 102

DrawingRevision: the revision number of the drawing.

DrawingAuthor: the person who made up the drawing.

ErpProjectUnit: Subproject ID of ERP. Is often to equal to DrawingNo. But while DrawingNo

follows a classification defined in the CAD, ErpProjectUnit refers to a project structuring in ERP.

DeliveryDate: scheduled delivery date.

GenericOrderInfo018: Project – Name

GenericOrderInfo02: Project – Addition

GenericOrderInfo03: Project – Address

GenericOrderInfo04: Project – Info

GenericOrderInfo05: Location – Name

GenericOrderInfo06: Location – Street

GenericOrderInfo07: Location – Zip Code

GenericOrderInfo08: Location – City

GenericOrderInfo09: Customer – Name

GenericOrderInfo10: Customer – Street

GenericOrderInfo11: Customer – Zip Code

GenericOrderInfo12: Customer – City

GenericOrderInfo13..20: Application specifically defined additional information.

Comment: Any comment regarding the Order.

OrderArea: Accounting area in m2 of the whole order (i.e. related to the OrderNo in question).

This value is typically used for communication from CAD to ERP.

3.3.2 Import Source Information

ImportSource: If the Order was imported from another file, the file name can be entered in

ImportSource.

ImportSourceType: In ImportSourceType, the type of the source file can be specified here (such as

BVBS or Unitechnik 5.2, for example).

3.3.3 ApplicationName, ApplicationGUID, ApplicationVersion

These information are devised to identify the application by means of which the data has been

generated or revised respectively. In case of doubt, this will determine how data-content is to be

interpreted.

Typically, these fields will be evaluated upon loading from the file or the clipboard respectively, and

will then be set to zero (after conversion, if appropriate). These values should not be used within the

application.

The ApplicationName is typically the title of the application, but does not include a version and no

claim to unambiguity.

The ApplicationGUID should uniquely identify the application, but again without quoting a more

precise version (here, a separate GUID may be entered for each major version, if appropriate). The

GUID should have the format of "59303B9F-B7E1-42bf-857A-9F6574A37433".

The ApplicationVersion should hold a version detail as precise as possible; typically, this is a

character string in the format of "4.21.2471.40371".

8 For UNICAM import or export respectively, the first 12 nos. of GenericOrderInfo entries (if any) will be mapped onto

the 12 nos. lines of Construction project / Construction site / Owner.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page26 / 102

3.4 OrderInfo, OrderInfoVal

[Designed in cooperation with Precast Software Engineering GmbH, Salzburg (A).]

The OrderInfo table contains additional order block related entries. The type of entries is application-

dependent and is designated by the Type attribute. For instance, wide-ranging project guidelines can

be described here.

The OrderInfo Table just has Code field: it is an alphanumerical Code in the sense of an article code

or another type of matchcode. The meaning of the Codes is defined only within a given OrderInfo.

I.e. different OrderInfo types have individual systematics for the Code field.

The OrderInfoVal table is a sub-table of OrderInfo. Each OrderInfoVal item has a Type attribute

that determines the meaning of the entry. The V attribute contains an alphanumerical string and is

the value itself. Additional (optional) attributes are the Culture attribute (language) and the U

attribute (Unit) 9.

The standard defines the following Type attributes10:

➢ OrderInfo Type = "DrawingTemplate":A „DrawingTemplate“ item indicated the project

template to be used when creating the detailing drawings in CAD. This is used when the

ERP system is controling the CAD drawing creation process and the ERP is thus ordering

drawings from the CAD. The OrderInfo entry itself specifies only the Code which identifies

the drawing template. Related OrdeInfoVal items may specify more details:

o OrderInfoVal Type = "LocalizedName": A localized name.

o OrderInfoVal Type = "Description": A localized description text.

➢ OrderInfo Type = "AccountingPosition":

An „AccountingPosition“ entry describes an accounting position of the order. By

transferring the available accounting positions from ERP to CAD, the CAD designer can

directly associate the correct accounting positions to the elements he is drawing.

The OrderInfo item itself contains only the Code of the accounting position. (It is the ID if

the ERP accounting position and will then be referenced in the field Product.ItemPosition

when elements are transmitted from CAD to ERP). Further details of the accounting position

may be specified in OrderInfoVal subentries:

o OrderInfoVal Type = "LocalizedName": A localized name.

o OrderInfoVal Type = "Description": A localized description..

o OrderInfoVal Type = "PositionInBOQ": Designation of the releted position in the BOQ.

o OrderInfoVal Type = "PositionInOrder": Designation of the releted position in the order.

o OrderInfoVal Type = "PSE.AccPos.XYZ": An additional accounting position information as it is

provided by a Precast Software Engineering systemen with field name XYZ.

Example:

<OrderInfo Type="AccountingPosition">
 <Code>U1.F1.Stairs</Code>
 <OrderInfoVal Type="LocalizedName" V="Geschoss 1, Treppen" Culture="de"/>
 <OrderInfoVal Type="LocalizedName" V="Floor 1, Stairs" Culture="en"/>
 <OrderInfoVal Type="PSE.AccPos.IncludedReinforcement" V="0.23" U="kg/m²"/>
</OrderInfo>

3.5 Product (Element)

For double walls, the Product is the complete wall; it includes both wall shells.

9 For unit specification, the same applies to the unit of the ElemenInfo entry.
10 In addition, application specific types can be defined. In order to avoid naming conflicts with future extensions oth

the standard, the application specific type names should start with "I_ ".

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page27 / 102

The information of UNICAM-SLABDATE are partly accommodated in the Product segment, and

partly in the Slab segment respectively.

3.5.1 ElementNo

[Replaces Slab.SlabNo, see section 3.7.7]

Number or name of the precast element.

3.5.2 ProductType

The ProductType is roughly equivalent to the Product specifications of the UNICAM-HEADER.

Any number of type details may be used here. The following types are fixedly defined:

- 00: element and roof slab

- DW: double wall

- 03:prestressed slab

- 04: isolating slab

- 05: facade element

- 06: solid floor

- 07: silo slab

- 08: constructional part

- 09: solid wall

- 10: hollo core slab

- 11: sandwich panel

- 16: brick floor

- 19: brick wall

- NW: zero wall

- TW: thermo wall

- 36: light-weight concrete full-thickness floor

- 39: light-weight concrete solid wall

- GML: Generic Multi Layer element

- BM: beam

- CL: column

- ST: stairs

- MD: module

- DT: double-tee

- InSitu: In-situ concrete element. Elements of this type are not precast items; instead, they are

cast in situ concrete parts of the building. Typical example: upper layer of floors.

Please note: If different ProductType values occur, the Order block will be split up into several

HEADER blocks for UNICAM export (in UNICAM, the ProductType appears in the HEADER

block).

Please note: Here, the types 01 or 02 are not used for the double wall, but rather the type DW; in the

PartType of the Slab, a differentiation will then be made between wall half #1 and wall half #2.

Virtual Element

If no ProductType is specified (or an empty string is given), the element is a Virtual Element: such

an element is used to transfer additional project-related information that cannot be assigned to any

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page28 / 102

real element. Examples are project-related additional services that are listed for billing reasons or

additional materials that cannot be assigned to any individual element.

3.5.3 PieceCount

Target quantity.

3.5.4 Data transfer for double walls:

TurnWidth, TotalThickness, DoubleWallsGap

The following definition will apply to double walls (or other double-wall-like elements with

separately produced slabs):

The single slabs will be represented in their rotational position as they are on the single pallets

prior to turning; that is to say, the first wall half (= the wall half to be turned) must be shown turned

in relation to the finished product.

That is to say, the representation of the single slabs shows the production-engineering situation, but

not the finished product. The double wall is thus described in its opened form.

In order to know how the finished element will look like it is not good enough to consider the single

slabs, but one must also know how the two wall halves are joined together. This additional information

is provided by setting TotalThickness and TurnWidth11.

The DoubleWallsGap describe the resulting gap between the two parts after turning the first part.

Actually, this value is redundant as it results from the other given geometric details. It isn’t thus a

fundamental value and it is just provided for compatibility reasons.

A more formal and mathematical description of the special geometrical treatment of double

walls is given in section 3.7.4.

Please note for the import of UNICAM data from CAD systems:

If UNICAM data are applied from a CAD system, an assumption must be made regarding the double wall coordinates

used. Depending on the CAD system or the setting of the CAD system, there may be fairly different definitions which,

however, are not obvious from the UNICAM file. The conventions used most frequently are as follows:

a) The double wall halves are transferred in an open representation, that is to say like in PXML. As there is no

TurnWidth field in UNICAM, at this point, we must know what pallet width is being assumed in the CAD

system; failing this, it will not be possible to correctly interpret the data. The best choice would be, to use

TurnWidth=0 for the open representation in UNICAM; unfortunately, this setting is hardly ever used.

b) The second wall half is transferred similarly as in case a), and thus similarly as in PXML. The first wall half, on

the other hand, will be transferred in a pseudo-turned form: the data is obtained from the open representation

by turning by 180° around the axis Y=TurnWidt/2 (=”turning in”) and subsequently flipping on the XY-plane.

c) The inverse pseudo-turned form is similar to case b), but the double wall is viewed from below here, i.e.

looking at the exterior of the second wall half. When importing these data, we have to rotate the whole wall

through 180° around the Z-axis, plus we then have to pseudo-turn the second wall half.

The pseudo-turned form and the inverse pseudo turned form are linked by a transformation Myz:

𝑀𝑦𝑧 = (
−1 0 0
0 1 0
0 0 1

)

This transformation describes a mirroring on the YZ plane. This transformation can be used to transform the pseudo turned

form into the inverse pseudo turned form and vice versa (in fact, Myz is an involutory matrix, i.e. it is identical with its

inverse). Moreover, the inverse pseudo turned form can be converted to the correct open form, by first applying the

“wrong” transformation (i.e. the one that would be appropriate for the pseudo turned form) and subsequently applying

Myz. The same is true when converting from pseudo turned form. Therefore, Myz is a quite simple and universal way of

switching between the two forms.

11 The choice of TurnWidth is actually free as long as it is considered correctly when setting Slab.Y and Slab.ProdY. It is

best to set TurnWidth to 0.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page29 / 102

3.5.5 Comment

Any comment regarding the product.

3.5.6 RotationPosition

An angle in degrees, which indicates how the element is rotated relative to the original CAD drawing

(The rotation is typically performed during the pallet assignment process and is motivated by

production optimization considerations).

The rotation of the element takes place around the Z-axis in positive rotation direction (i.e. counter-

clockwise). Since the first part of a double wall is laid out in turned mode, its rotation angle has to

be counted in negative rotation direction.

Best practice is to not rotate the element and thus not use the RotationPosition field. Instead of rotating

the element, the Slab.ProdRotX/Y/Z fields should be used12.

3.5.7 Stacking Information

StackNo

[Replaces Slab.NumberOfMeansOfTransport, see section 3.7.7]

Identifier of the transport stack.

The StackNo is a text field and may even contain structured values. For instance, two stacks, which

are to be transported together, can be held together via a designation structure of the form "17.1" and

"17.2".

StackID

Unique database ID of the stack. This ID identifies the stack across all orders.

StackingSequence

[Replaces Slab.TransportSequence, see section 3.7.7]

Sequence within the transport stack.

The element with the lowest value has to be placed first on the stack13.

StackungLevel

[Replaces Slab.PileLevel, see section 3.7.7]

Pile level within the transport stack. This field is of interest solely if there might be more elements

on one pile level. Otherwise the StackSequence indication should suffice.

Moreover this field is mainly just an informal information for the operators. An automatic stacking

machine would definitely use the exact stacking coordinates (see below).

12 One difficulty in using RotationPosition is that you have to "guess" the position of the original (non-rotated) element

in order to correctly interpret the project coordinates and the stack coordinates, because project and stack coordinates

refer to the original (non-rotated) element. However, the rotational/displacement performed in CAD is not clearly

known, because only the rotation is specified in RotationPosition, but not the displacement. The exact rule for the back

calculation therefore depends on the CAD. In many cases the back transformation has to be done by first rotating back

the element and then moving it such that its enveloping rectangle (i.e. the smallest x/y-rectangle containing all lot-

Outlines) is positioned at (0, 0).
13 Most often the PXML StackingSequence field corresponds exactly to the UNICAM field "Assembly sequence in

Transport pile number". However, the UNICAM specification stated the latter should be the inverse stacking order and

thus inverse to the PXML StackingSequence. But most CAD systems doesn't follow this specification and use the

UNICAM field as a stacking sequence field, i.e. exactly the same way as the PXML StackingSequence.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page30 / 102

StackingX/Y/Z/Angle/RotY/RotX

[Replaces Slab.PositionInPileX/Y/Z and Slab.AngleInPile, see section 3.7.7]

Position coordinates of the element on the transport stack.

The position of the element on the stack results by applying the following transformations in the

sequence given below:

1) Rotation StackingAngle around the absolute Z axis.

2) Rotation StackingRotY around the absolute Y axis.

3) Rotation StackingRotX around the absolute X axis.

4) Translation by StackingX/Y/Z.

(All angles are given in degrees).

3.5.8 Project Coordinates

[Replaces Slab.ProjectCoordinates, see section 3.7.7]

The project coordinates describe the position of the element within the real-world building.

A set of 3 points P1, P2 and P3 has to be given:

• P1 is the point within the building where the precast element has to be positioned.

• The vector 𝑃1𝑃3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ describes the axis within the building where the X-Axis of the element is

mapped to.

• The vector 𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ describes the axis within the building where the Y-Axis of the element is

mapped to14.

Note:

The project coordinates describe a rotation and displacement in space. The somewhat peculiar representation using the 3

mentioned points has been chosen for compatibility with UNICAM. However, it is simpler and more common to describe

such transformation by a rotary matrix 𝑅 and displacement vector 𝑡 . A point of the element representation is then

transferred to the building coordinates by first rotating it with 𝑅 and then moving with 𝑡 .

For the given 𝑅 and 𝑡 , the points P1, P2, P3 can be calculated as follows (note, however, that P1, P2, P3 are not uniquely

determined):

𝑃1 = (

𝑡𝑥
𝑡𝑦
𝑡𝑧

) , 𝑃2 = (

𝑅12 + 𝑡𝑥
𝑅22 + 𝑡𝑦
𝑅32 + 𝑡𝑧

) , 𝑃3 = (

𝑅11 + 𝑡𝑥
𝑅21 + 𝑡𝑦
𝑅31 + 𝑡𝑧

)

If, on the other hand, P1, P2, P3 are given, 𝑅 und 𝑡 can be calculated as follows:

𝑡 = (

𝑃1𝑥

𝑃1𝑦

𝑃1𝑧

)

(

𝑅11

𝑅21

𝑅31

) = (𝑃1𝑃3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗)

0
, (

𝑅12

𝑅22

𝑅32

) = ((𝑃1𝑃3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ × 𝑃1𝑃2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ × 𝑃1𝑃3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗)0, (

𝑅13

𝑅23

𝑅33

) = (

𝑅11

𝑅21

𝑅31

) × (

𝑅12

𝑅22

𝑅32

)

Here the following notation for unit vectors is used:

(𝑎)0 ∶=
𝑎

|𝑎 |

14 This definition requires 𝑃1𝑃2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ to be orthogonal to 𝑃1𝑃3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . While this condition might be usually given, it cannot be

guaranteed. A more general (and thus mathematically more correct) approach is to define the Y-Axis as being given

with the double cross product (𝑃1𝑃3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ × 𝑃1𝑃2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ × 𝑃1𝑃3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page31 / 102

3.5.9 Supplementary Product Information

AdditionInfo

[Replaces Slab.ProductAddition, see section 3.7.7]

Additional information related to the product type.

UnloadingInfo

[Replaces Slab.TypeOfUnloading, see section 3.7.7]

Information on how to handle the element at unloading (tilting).

TransportInfo

[Replaces Slab.MeansOfTransport, see section 3.7.7]

Information related to the means of transport or a transport related grouping of elements.

The transport container type may be specified here.

ItemPosition

[Replaces Slab.OrderPosition, Slab.ProductGroup, Slab.SlabType and Slab.ItemDesignation, see section 3.7.7.

More specifically:

Product.ItemPosition = Slab.OrderPosition@Slab.ProductGroup@Slab.SlabType@Slab.ItemDesignation]

Item information typically related to ERP system references.

The value of the field can have a multi-part structure (but does not have to). The individual parts must

then be separated by @ signs (example: "123 @ AFX5").

A possible use of this field is the specification of the ERP accounting position to which the element

is assigned. Typically, reference is made here to ID values that have previously been transferred to

the CAD via Order.OrderInfo entries (of type AccountingPosition).

3.6 ElementInfo

[Designed in cooperation with Precast Software Engineering GmbH, Salzburg (A).]

The ElementInfo table contains additional entries for the Product block. The type of entries depends

on the application and is distinguished by the Type attribute.

The ElementInfo entries are mainly used for transferring data from CAD to ERP. Typically,

summarizing quantities and accounting articles are needed in this context, without going into too

detailed geometrical information. Accordingly, the CAD to ERP data transmission is often only up

to the depth of the Product level; details of the underlying structures are considered in a summarizing

manner in ElementInfo items.

ElemenInfo entries can also be used for transferring extra data to the production system. So, for

instance, a production master computer might need additional accounting information in order to be

able correctly display production reports and target production cycle times.

The Inventory flag indicates whether the element info entry is provided for inventory management,

too. The supplied quantities are then physically accurate and can be used for warehouse management

tasks. If the Inventory field is not set, or is set to false, the related quantities might describe

consolidated amounts, which are rather intended for accounting purposes.

3.6.1 Fields of ElementInfo entries

The exact meaning of each field is dependent on the Type attribute. But basically their meaning can

be summarized as follows:

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page32 / 102

• Code: an alphanumeric code like an article code or another type of “match code”. The

PXML standard does not specify values for the Code. That is, the actual codes are system-

specific and agreed between the CAD and ERP systems15.

• Description: A free textual description or designation.

• ObjectID: Unique identification of the object, to which the ElementInfo enty is referred to.

It is also possible to have several ElementInfo entries referring the same object, thus having

the same ObjectID. A such way multiply referred underlying object may also be referred

from within different Product blocks.

• PieceCount: An integer value multiplier for the entire ElementInfo item. If the value is not

specified, usually a quantity of 1 is assumed. An ElementInfo entry with a PieceCount value

of n is to be considered as equivalent to n identical ElementInfo items with PieceCount 1.

• Val1, Val2: Quantity or size values. The exact meaning and the underlying unit are Type-

dependent. For the calculation of total quantities these values have typically to be

multiplied by PieceCount.

• Unit: unit of measurement for the values of Val1 and Val2. The standard defines the

folowing units: n (= piece count), mm, cm, m, km, m², m³, L (=Liter), kg, t, EUR (as well as

all other currency codes according ISO 4217). If no measurement unit is specified, it can be

assumed that SI basic units are used (m, m², m³, kg). Composite units can be specified by

use of “*” and “/”, e.g. kg/m², N*m.

• Details: Depending on the Type attribute value, far-reaching details can be entered here. In

complex cases a whole structured data object can be described by providing a complete

XML string.

In addition, application-specific fields are allowed (I_P_ fields).

3.6.2 Predefined ElementInfo types

The following ElementInfo Type values are defined in the PXML standard16:

➢ ElementInfo Type = "AccArea":

Accounting area of the element.

The value provided here follows agreed accounting conventions and may differ from the real

geometrical surface are.

Val1: Value of the area in m2.

➢ ElementInfo Type = "AccAreaExt":

Extended accounting area of the element.

This type is similar to "AccArea", but additional areas are included, typically the area

covered by iron projections.

Val1: Value of the area in m2.

➢ ElementInfo Type = "AccAreaAdd", "AccAreaExtAdd":

Additional accounting area of the element.

Here it is possible to specify another additional accounting area that is not yet included in

AccArea or AccAreaExt.

Val1: Value of the area in m2.

➢ ElementInfo Type = "EffortArea":

Effort area of the element.

A value given in m2 that estimates the total production costs of the element. The value is

15 This “freedom” in the used of the Code field is the main difference to the Type field, as the latter has a much more

predefined meaning.
16 In addition, additional application-specific types may be defined. In order to prevent naming conflicts with future

PXML extensions, the application specific type values should start with prefix "I_P_".

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page33 / 102

typically calculated by using real or accounting area figures as a basis and adding some

virtual area values to it that represent additional production efforts. The resulting total area

is then somehow proportional to the production costs. The compressively produced

EffortArea is a good indicator for the plant’s production output.

Val1: Value in m2.

➢ ElementInfo Type = "ArchitecturalPart":

Architectural unit (e.g. wall or floor) that is superordinate to the element.

Elements that belong to the same parent architectural unit should have a common ObjectID

Code: This can be used as a distinction between different types of architectural units

Val1: Total area of the architectural unit in m2 (accounting value, typically including

cutouts).

Val2: Partial area (in m2) of the element, belonging to the precast element in question

(accounting value, typically including cutouts). This value is potentially identical with

AccArea; then it can also be omitted.

➢ ElementInfo Type = "Outlet":

Cutout in the project’s building.

Such a cutout may span over several precast elements and may therefore be referred from

within different Product blocks. It is therefore crucial to identify the underlying project’s

cutout by specifying the ObjectID17.

Val1: Total area of the project cutout in m2.

(Alternatively, a number of recesses can also be specified in Val1. But then Unit must be set

to "n").

Val2: Partial area of the cutout (in m2), belonging to the precast element in question.

ObjectID: Unique ID of the cutout in the CAD project. If all cutouts of a project have to be

summated, all those with identical ObjectID have to be counted only once.

If the cutout should also be assigned to an architectural unit (ArchitecturalPart), the

ObjectID should have the following structure:

 abc.xyz

Here abc is the ObjectID of the ArchitecturalPart and xyz is an identification of the cutout

within the ArchitecturalPart.

Code: This can be used as a distinction between different cutout types18.

➢ ElementInfo Type = "MountPart":

Mounting part, fitting.

As well as described for “Outlet”, even an object referred in MountPart can belong to more

than one precast element. Again, the ObjerctID is used for defining this connection.

ObjectID: Unique ID of the mount part in the CAD project. If mount parts of a project have

to be summated, all those with identical ObjectID have to be counted only once

If the mountpart should also be assigned to an architectural unit (ArchitecturalPart), the

ObjectID should have the following structure:

 abc.xyz

Here abc is the ObjectID of the ArchitecturalPart and xyz is an identification of the

mountpart within the ArchitecturalPart.

Code: Article code of the mount part.

Val1, Val2: Value parameters of the mount part. The exact meaning of those values depends

on the mount part type, hence on the Code field.

17 Most often big cutouts has to be subtracted for accounting purposes. In some implementations the distinction

between “big” and “small” cutouts is already done in CAD, in other implementations it done in ERP. In the former case

the CAD may transfer only “big” cutouts to ERP, in the latter case all cutouts need to be transferred.
18 If, for instance, the CAD system makes a distinction between big and small cutouts but all cutouts (big and small

ones) are transferred as “Outlines”, the Code field may be used to specify this distinction.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page34 / 102

➢ ElementInfo Type = "SteelBar":

Round steel reinforcement.

Code: An article or match code that typically identifies a wire type (with its wire diameter,

steel quality, steel supplier, etc.).

Val1: Weight in kg. Depending on the value of the Inventory field, these are a real

warehouse management relevant quantities, or just accounting values. If both aspects are of

interested, two distinct ElementInfo entries have to be provided.

Details: Here, details for production processing may be provided (e.g., specify that a

reinforcement layer may be produced via flexible mesh welding machine or by means of a

single bar handling robot)19.

➢ ElementInfo Type = "LatticeGirder":

Lattice girder reinforcement.

Code: An article or match code that typically identifies a lattice girder type

Val1: Weight in kg. (Real or only for accounting purposes, depending on the Inventory

field value).

➢ ElementInfo Type = "StdMesh":

Standard mesh reinforcement.

Code: An article or match code that typically identifies a standard mesh type

Val1: Area in m2. (Real or only for accounting purposes, depending on the Inventory field

value).

➢ ElementInfo Type = "BentMesh":

Bended standard mesh.

Code: An article or match code that identifies a bent mesh type to the extent that pricing can

be calculated via the provided Val-fields.

Val1: Weight in kg (Real or only for accounting purposes, depending on the Inventory field

value).

➢ ElementInfo Type = "Cage":

Reinforcement cage.

Code: An article or match code identifying the cage type.

Val1: Weight in kg (Real or only for accounting purposes, depending on the Inventory field

value).

➢ ElementInfo Type = "Concrete":

Concrete lot.

Code: An article or match code which identifies the concrete mixture.

Val1: Volume in m³ (real or an accounting quantity, see Inventory field).

➢ ElementInfo Type = "ErpProjectUnit":

ERP project unit assigned tot he element. The values typically refer to the IDs that have

been transmitted via Order.ErpProjectUnit from ERP to CAD.

Code: The Code of ErpProjectUnit.

➢ ElementInfo Type = "PriceQty":

A size or quantity indication which is relevant for the price calculation. (It may be a surface,

a volume, a number of pieces, or whatever else can be used as a multiplier for a price

calculation. It is even possible to specify the price itself).

Val1: value of the price defining amount.

➢ ElementInfo Type = "PlanningQty":

A size or quantity indication which is relevant for production planning. This quantity is

often used for determining production capacity, as well. Sometimes the unit used for the

PlanningQty differs from the unit used in PriceQty. There are cases, for instance, where

19 Alternatively, a processing mode could be defined via the Code field, as well.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page35 / 102

PriceQty is given in m³ and PlanningQty is given in number of pieces.

Val1: value of the planning relevant amount.

➢ ElementInfo Type = "TransportInfo":

Miscellaneous information about the means of transport. Typically, a type identifier is

specified in the Code field (container type) and names and dimensions can be specified in

ElemInfoVal entries.

3.6.3 ElemInfoVal

When the fields defined in the ElementInfo entry are not sufficient, additional values can be added by

using ElemInfoVal entries.

The following table describes the ElemInfoVal types defined by the standard.

Type Description Example

Len Length 1234.5

Width Width 456.8

Height Height 123.4

Qlty Quality (ex. material quality) Q123

Name Designation abcd

The String could also contain other internal fields which should have the Prefix “I_”.

Example MountPart:

<ElementInfo Type="MountPart">
 <Code>FK77</Code>
 <ElemInfoVal Type="Height" V="100"/>
 <ElemInfoVal Type="Width" V="225.3"/>
 <ElemInfoVal Type="Len" V="310.1"/>
 <ElemInfoVal Type="Qlty" V="Q123"/>
</ElementInfo>

3.7 Slab (Element Part)

3.7.1 PartType

We can use any type details. The meaning of PartType will be a function of the higher-ranking

ProductType.

The following PartType values are fixedly defined for the DW Product type:

- 01: double wall 1st stage, and

- 02: double wall 2nd stage

In addition to the main parts of an element, there are also supplementary parts, such as closing plates.

The code 05 is intended for these:

- 05: Supplementary part

3.7.2 Geometric Slab Placement (X/Y/Z, RotX/Y/Z)

These fields describe translation and rotation that are used for geometrically placing the slab (=

element part) within the element.

The sequence of the placement operations is as follows20:

20 The described sequence has to be observed strictly. The sequence may look somewhat unusual but is motivated by

compatibility considerations.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page36 / 102

1) Translation (X, Y, Z)

2) Rotation RotZ around the absolute Z axis.

3) Rotation RotY around the absolute Y axis.

4) Rotation RotX around the absolute X axis.

The translation offsets are in mm and the rotation angles are in DEG.

3.7.3 Slab Production Directives (ProdX/Y/Z, ProdRotX/Y/Z)

When transferring data from CAD, the Slab.X/Y/Z/RotX/RotY/RotZ values are only used to determine

the position of the element parts (wall halves) relative to each another. If, in addition to this, the

production placement of the element parts should be specified, some more fields are required: ProdX,

ProdY, ProdZ, ProdRotX, ProdRotY, ProdRotZ. The position on the production pallet is given by

applying the following transformations in the order listed here:

1) Rotation ProdRotX around the absolute X axis.

2) Rotation ProdRotY around the absolute Y axis.

3) Rotation ProdRotZ around the absolute Z axis.

4) Translation (ProdX, ProdY, ProdZ)

In total, the position of an element part on the production pallet results from the following subsequent

transformations being executed one behind the other:

1) Slab.X/Y/Z

2) Slab.RotZ

3) Slab.RotY

4) Slab.RotX

5) Slab.ProdRotX

6) Slab.ProdRotY

7) Slab.ProdRotZ

8) Slab.ProdX/ProdY/ProdZ

3.7.4 Geometric Placement and Production Directives for Double Walls

The double-wall elements (i.e. the product types DW, NW, TW) represent a special case. For these

elements, historical reasons imply that the slab placement of the first wall half (= the wall half to be

turned) is essentially determined by Product.TurnWidth/TotalThickness.

More precisely, the effective geometric placement and production directive values of wall half 1 are

calculated as follows:

• Slab1.XResulting = Slab1.X

• Slab1.YResulting = Slab1.Y – Product.TurnWidth

• Slab1.ZResulting = Slab1.Z – Product.TotalThickness

• Slab1.RotZResulting = Slab1.RotZ

• Slab1.RotYResulting = Slab1.RotY

• Slab1.RotXResulting = Slab1.RotX + 180°

• Slab1.ProdRotZResulting = Slab1.ProdRotZ

• Slab1.ProdRotYResulting = Slab1.ProdRotY

• Slab1.ProdRotXResulting = Slab1.ProdRotX + 180°

• Slab1.ProdXResulting = Slab1.ProdX

• Slab1.ProdYResulting = Slab1.ProdY + Product.TurnWidth

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page37 / 102

• Slab1.ProdZResulting = Slab1.ProdZ + Product.TotalThickness

This calculation rule is just a formal algorithm for what has already been described for double walled

elements in section 3.5.4.

Note: It must be emphasized that these special rules apply only to the half slab 1, i.e. to the slabs

with PartType "1" or "01" (and only for product types DW, NW, TW). If you want to avoid this special

condition and uses explicit placement specification instead, just avoid setting the PartType to “1” or

“01”. If explicit placement specification is used, the PartType may be left empty, since the role of the

single slabs can be deduced by their RotX value. Alternatively, you could use other PartType values,

such as "P01".

3.7.5 Various Slab Information

There is a compilation of various pieces of slab information, which, in detail, corresponds to the

respective fields in the info block of the UNICAM-SLABDATE.

Some of these information items are redundant as they can be computed from other variables. These

fields are mainly present for UNICAM-compatibility reasons. This is especially true for the fields

MaxLength, MaxWidth, IronProjectionLeft, IronProjectionRight, IronProjectionBottom,

IronProjectionTop: in addition of being fully redundant, these fields suffer from the defect of not

being invariant when the slab is rotated (i.e. they would have to be adjusted upon rotation of the slab).

It is therefore recommended to try to not use these fields. Instead, the underlying geometric detail

information should be used to calculate the respective values.

ReforcemInfo, merely for compatibility with UNICAM, includes the details of the UNICAM-

REFORCEM Info block.

The Generic Slab Info fields are available for freely definable additional information

3.7.6 Multi-Layer Elements

Several concrete layers (lots) may be specified in any one Slab. Or, an element part could be

composed of several layers each of which has its own reinforcement or its own mount parts (according

to UNICAM-LAYERS).

In PXML, such multi-layer elements are implemented by setting the Layer values within the Outline-

and Steel-sections.

3.7.7 Legacy Slab Fields

The fields listed below were originally defined on Slab level (for historical reasons motivated mainly

by compatibility with UNICAM). However, the information they contain is on Product level, i.e. an

information on element level (as against to slab level).

The implementation of PXML-Delegate Files made it necessary to bring these fields to where they

really belong, i.e. to the Product level. These Slab fields were therefore replaced by the

corresponding Product fields.

• Slab.SlabNo → Product.ElementNo

• Slab.NumberOfMeansOfTransport → Product.StackNo

• Slab.TransportSequence → Product.StackingSequence

• Slab.PileLevel → Product.StackingLevel

• Slab.PositionInPileX → Product.StackingX

• Slab.PositionInPileY → Product.StackingY

• Slab.PositionInPileZ → Product.StackingZ

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page38 / 102

• Slab.AngleInPile → Product.StackingAngle

• Slab.ProjectCoordinates → Product.P1X/P1Y/P1Z/P2X/P2Y/P2Z/P3X/P3Y/P3Z

• Slab.ProductAddition → Product.AdditionInfo

• Slab.TypeOfUnloading → Product.UnloadingInfo

• Slab.MeansOfTransport → Product.TransportInfo

• Slab.OrderPosition,

Slab.ProductGroup,

Slab.SlabType,

Slab.ItemDesignation, → Product.ItemPosition

The resulting obsolete fields are referred to herein as Legacy Slab Fields. Conceptually, they would

be dispensable, but they need, in fact, to be continued for backward compatibility reasons. More

precisely, the following backward compatibility strategy is recommended:

1) Applications using PXML as their internal data structure should no longer use (internally)

the Legacy Slab Fields; instead, they should use the related Product field.

2) A process reading a PXML file should read the Product fields, if available, and should fall

back to the Legacy Slab Fields, if the related Product fields haven't been set. (More

specifically, if a field isn't set on Product level, the value of the first Slab is taken, where the

related field is set to a non-empty value).

3) A process writing a PXML file can restrict itself to write the Product fields if and only if it

can be sure that the reading process will be able to read those fields (i.e. the reading

software already implements the "new" schema with those fields at Product level). In case

of doubt, the writing process should adopt a maximum compatibility policy and also write

all Legacy Slab Fields21.

3.7.8 Simplified geometry representation

Many legacy systems do not process the following values:

• Slab.RotX/RotY/RotZ

• Slab.ProdX/ProdY/ProdZ

• Slab.ProdRotX/ProdRotY/ProdRotZ

• Outline.RotX/RotY/RotZ

• Steel.RotX/RotY/RotZ

• Steel.ProdX/ProdY/ProdZ

In the simplified geometry representation, we strive to reduce these values to 0 to stay compatible

with such legacy systems. In order to minimize information losses, the values mentioned fields are

incorporated in other fields as much as possible22.

21 In theory a writing process could even restrict itself to write only the Legacy Slab Fields, without also writing the

related Product fields. There are, however, cases where writing the Product level fields is indispensable, e.g. when

using PXML Delegate Files or when sending data to an ERP system that doesn't need to know about Slab details.
22 The major information loss occurs when Outline or Girder objects are to be rotated in the X or Y axes. For these

operations it can be suggested to just transform the x and y coordinated. More specifically, if a rotation by angle φ in the

X axis has to be performed, the following would be done:

𝑌 ≔ 𝑐𝑜𝑠𝜑 ∙ 𝑌

𝛼 ≔ 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑐𝑜𝑠𝜑 ∙ 𝑠𝑖𝑛𝛼, 𝑐𝑜𝑠𝛼)

Here Y stands for all Y coordinated that apply to SVertex and α stands for Girder.AngleToX.

A similar calculation applies for a rotation in the Y axis:

𝑋 ≔ 𝑐𝑜𝑠𝜑 ∙ 𝑋

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page39 / 102

3.8 Outline

By Outline, we understand a general geometric boundary. The Type attribute determines the type of

the enclosed item:

• lot

• mountpart

Some tags of the Outline segment are merely intended for certain Outline-types only, and will be

ignored for the other Outline-types.

The Lot Outlines describe a Concrete Lot with contours, cutouts and concrete data.

The Mountpart Outlines describe mount parts.

3.8.1 Geometric Outline Placement (X, Y, Z, RotX, RotY, RotZ)

These fields describe translation and rotation that are used for placing the Outline object within the

Slab. The sequence of the placement operations is as follows23:

1) Translation (X, Y, Z)

2) Rotation RotZ around the absolute Z axis.

3) Rotation RotY around the absolute Y axis.

4) Rotation RotX around the absolute X axis.

The translation offsets are in mm and the rotation angles are in DEG.

Position of Installation:

In UNICAM (version 6.0 or higher), there is an indication of a Position of installation related to the Slab zero point.

This value is redundant up to a certain degree as the position of installation is derived from the position and geometry of

the mount part. (Though this is only true for known mount parts, but only those of this type can be automatically installed

or placed). For this reason, there is no such position detail included in PXML.

However, the X/Y Offset of the mount part can be set such that it coincides with the position of installation (the vertex

coordinates must be compensated accordingly). It is recommended to proceed in this way for data interchange with

UNICAM.

3.8.2 Height

Height in mm (thickness of the concrete layer, height or depth of the mount part).

3.8.3 Name

Identifier of the item. When reading UNICAM concrete layers, the concrete layer identification is

put into this field. When reading UNICAM mountparts, the mountpart designation is used.

3.8.4 GenericInfo

Freely usable informational lines.

3.8.5 MountingInstruction (only for Mountpart)

Instructions for installation. The following applies following the UNICAM Installation Identifier:

• 0 = the part is being installed,

𝛼 ≔ 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑠𝑖𝑛𝛼, 𝑐𝑜𝑠𝜑 ∙ 𝑐𝑜𝑠𝛼)

With this approach a 180° rotation in the X or Y axis becomes a reflection on the XZ or YZ plane.
23 The described sequence has to be observed strictly. The sequence may look somewhat unusual but is motivated by

compatibility considerations.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page40 / 102

• 1 = the part is merely being drawn only,

• 2 = the part is merely being installed,

• 3 = the part is neither being drawn nor installed,

• 4 = the part is being installed into reinforcement, and

• 5 = the part is being automatically installed.

3.8.6 MountPartType, MountPartArticle (only for Mountpart)

This corresponds to the respective UNICAM definitions.

However, the MountPartType “21” is defined in a more general way as being “void form”. Inserts

of this type can be used for modelling cutouts and recesses in concrete. In this light, there are two

alternative ways for defining cutouts: either by using a cutout-Shape or by using a voiding

mountpart. The latter, while being a more complex approach, is much more flexible24.

3.8.7 MountPartProperties (only for Mountpart)

This corresponds to the respective UNICAM definitions:

• MountPartIronProjection = rebar projection in mm. These are rebars that protrude from a

mount part.

• MountPartDirection = The direction of the rebar projection or the orientation of the

mounting part respectively.

The angle detail is within the range of]-180°, 180°]. For export to UNICAM, this is

converted to [0°, 360°].

• MountPartLength/MountPartWidth = length / width in mm.

These values are optional, and are usually set to facilitate automatic trimming to size of the

part. In this sense, these are the production dimensions of the mount part.

Basically, these values are only required for mount parts the size of which is variable and

not fully defined through the item ID.

The precise meaning of these two dimensions will depend on the type of the mount part.

There may be types that will merely require one of these two dimensions, or else meanings

other than those of the length or width may be assigned to these two values.

3.8.8 Concrete Properties (only for lots)

• ConcretingMode = concreting flag.

• ConcreteQuality = concrete quality or grade (such as B25, for example). In addition to the

actual concrete quality, further (plant-specific) information can also be specified here, e.g.

"B25.Red" for a colored concrete.

• UnitWeight = bulkdensity in kg/dm³.

• Volume = target concrete volume in m³.

3.8.9 Layer

Used only for multi-layer elements; defines the layer to which the item belongs.

24 Please note: a voiding mountpart as described here requires always to be marked as to be installed in its

MountingInstruction, since a non-installation instruction would indicate that the part doesn’t have a voiding effect.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page41 / 102

3.8.10 ObjectID

The ObjectID enables the object to be identified by means of an ID, which is typically set by the CAD

system. In contrast to the GlobalID, the ObjectID is not necessarily unique, as it is possible to link

several Outline and/or Steel objects via a common ObjectID by declaring that way their affiliation to

a common underlying physical object.

The ObjectID can also have a multi-level structure by separating partial IDs with dots. This makes it

possible to create complex multi-level object hierarchies.

Example:

We consider the following objects:

A) ObjectID = “5”

B) ObjectID = “23”

C) ObjectID = “23.1”

D) ObjectID = “23.1.1”

E) ObjectID = “23.1.2”

F) ObjectID = “23.1.2”

Object A stands on its own, while objects B, C, D, E and F belong together as they form group "23".

Objects C, D, E and F also form group "23.1", which is a subgroup of group "23".

Objects E and F form group "23.1.2", which is a subgroup of group "23.1".

Using the ObjectID, it is also possible to connect Steel objects with Outline objects or to create

complex structures in which both Steel and Outline objects occur in any nesting. A connection to

ElementInfo objects can also be established via the ObjectID.

In principle, it is also possible to use the ObjectID to connect objects that are located in different

elements. This is useful, for example, if you have large mountparts that extend over several elements.

The ObjectID also defines a partial order between the objects, in the sense that, for instance, "23"

comes before "23.1" (25). This order relation can now be used to define priorities for common

properties: for example, if you want to use a common article code for the group "23", you refer to the

article code of B because B is the first object in this group (in the sense of the partial order mentioned).

3.8.11 Shape, SVertex

A Shape holds a sequence of points (SVertex) forming a polygon. The polygon is closed by

connecting the last point to the first point (without, however, listing the first point twice).

Cutout:

If this field is set to true, the Shape object will describe a cutout, i.e. a hole in the surrounding shape.

RefHeight:

A reference z-position used in conjunction with sloped edges. See below.

SVertex:

AnSVertex describes a corner mark of the polygon (a dot in the plane).

A Bulge can be assigned to each SVertex: if this is unequal 0, the connection of the vertex to its

follower vertex is an arc of the specified height (in mm).

25 Only a partial order is clearly defined, not a total order. While there is a clear order relation between B and C, the

relation between E and F can no longer be defined without additional conditions. And even the relationship between A

and B can only be determined if you specify whether you are using purely alphabetical sorting or so-called natural

sorting.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page42 / 102

This figure shows a Shape with 4 vertices. A, B and D are to have a Bulge=0, whereas the value of

Bulge for C is positive; with a negative value of Bulge, the arc would be curved inwards, i.e. the sign

of Bulge indicates the arc orientation class.

Special case of merely one SVertex:

If the Shape is composed of merely one single SVertex, this will be interpreted as a Circle. The

SVertex will specify the circle midpoint, and the amount of Bulge will be equivalent to the circle

diameter (which may also be 0); the sign of Bulge indicates the arc orientation class.

Line Attributes:

A LineAttribute can be specified for each SVertex to which the most varied application-specific

meanings can be assigned. Thus, information regarding the type of formwork may be specified via

the LineAttribute of an element contour.

Most often, the LineAttribut will be a four-digit hexadecimal figure that will be interpreted as a bit

field. Here, the various bits will have the following meaning:

Bit 00 [0001]: No chamfer at the bottom.

Bit 01 [0002]: Special formwork.

Bit 02 [0004]: Grouting joint.

Bit 03 [0008]: No chamfer at the top.

Bit 04 [0010]: Curvature at the bottom.

Bit 05 [0020]: Spring (formwork including a groove).

Bit 06 [0040]: Groove (formwork including a spring).

Bit 07 [0080]: Curvature on top.

Bit 08 [0100]: Clean edge.

Bit 09 [0200]:

Bit 10 [0400]:

Bit 11 [0800]: Supporting formwork (formwork designed to support a mount part).

Bit 12 [1000]: Window formwork.

Bit 13 [2000]: Contour formwork.

Bit 14 [4000]: Do not fix formwork in place.

Bit 15 [8000]:

Open polygon curve:

According to the above definition, the vertices of a Shape always form a closed polygon curve. An

open polygon curve can only be implemented in that you go back all the way to the first point from

the last point. More specifically, an openarc will be implemented through a Shape with 2 vertices A

and B that will satisfy ABulge=-BBulge. If, in addition to that, the two Bulge values equal 0, this will

give the special case of a simple line segment.

Please note: open polygon curves (isolated line segments or arcs) will always have a surface area of

0. They are thus only useful for Mountpart Outlines; for Lot Outlines, open polygon curves would

be interpreted as contours or cutouts with a surface area of 0, which obviously is meaningless. Hence,

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page43 / 102

a contour or cutout must never be represented as a sequence of isolated line segments, but must always

be represented via polygons.

Edges with profiles:

The Profile field allows the exact definition of the geometric profile of the edges. The field contains

a string of the form

z0|p0 z1|p1 z2|p2 … zn|pn

Thus, a sequence of number pairs separated by spaces is specified (the numbers themselves are

arbitrary XML floating point values)26.

The specification of the first and the last Z-value is optional: if the first Z-value is omitted, it is

assumed to be 0; if the last Z-value is omitted, the thickness of the concrete layer is assumed for it. If

both Z values are omitted, the profile string has the following format:

p0 z1|p1 z2|p2 … zn-1|pn-1 pn

Here the zi are vertical values (z-values) and the pi are horizontal values, with positive horizontal

values protruding from the concrete27. It should be expressly pointed out that the Profile field refers

to the concrete shape; in the case of recesses and inserts (formwork), the values are to be interpreted

in a mirrored manner, i.e. a negative pi value protrudes out from the insert.

Example:

This concrete profile is described by the following Profile entry:

<Profile>0|-10 10|0 50|0 50|25 80|25 80|0 115|0 125|-10</Profile>

The red and the blue dot in the drawing describe the lower and the upper reference point of the

nominal edge.

26 The specification of the first and the last Z-value is optional: if the first Z-value is omitted, it is assumed to be 0; if the

last Z-value is omitted, the thickness of the concrete layer plus Outline Z-offset is assumed for it. If both Z values are

omitted, the profile string has the following format:
p0 z1|p1 z2|p2 … zn-1|pn-1 pn

However, this short format is only supported for backward compatibility. The use of it is not recommended.
27 The definition that positive horizontal values protrude from the concrete assumes that a clear distinction can always

be made between "inside" and "outside". This is always possible for polygons with a non-null area, but polygons with

less than 3 points don’t have a defined orientation. In such cases, the orientation has to be assumed explicitly by

assuming it positive for all concrete edges and negative for the holes in concrete and for mountparts.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page44 / 102

The profile described in this way is extended downward and upward to infinity, resulting in a profile

defined for all z values (see green line):

The following examples describes the important cases of "bottom chamfer", "top chamfer" and "no

chamfer":

<Profile>60|0 70|-10</Profile>

<Profile>0|-10 10|0</Profile> <Profile>0|0</Profile>

The zi refer to an “absolute” zero that is supposed to be at –Outline.Z. However, this detail is relevant

for multilayer Slabs only (see below).

By definition, the profile string is never empty. So, if there is an empty string in the Profile field, it

means that no Profile has been specified.

The Profile field belongs to a specific SVertex, but, like the LineAttribute, it refers to the entire edge

following SVertex.

The Profile field provides an exact geometric description of the concrete contour. This creates a

certain redundancy to line attributes because the line attribute also contains contour information such

as chamfer, tongue and groove. However, the line attribute should be understood more as a production

directive: it indicates how production technology is to achieve a desired contour profile. But in the

end, it is up to the machine’s logic to decide whether following the indications given by the line

attributes or directly deducing all from geometry.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page45 / 102

Profile for multilayer Slabs:

In the case of multi-layer Slabs (sandwich elements), a Profile is considered that covers the entire Z-

region of the Slab and thus extends beyond the individual concrete layer. For each layer, only that

section of the profile is relevant which lies in the Z-area of the respective layer.

To be able to use the same Profile code for superimposed concrete layers, we define that the Z-values

of the Profile string refer to the absolute Z-location. Consequently, to obtain local Z values (which

are related to the Outline origin), one must subtract Outline.Z from all zi

Example:

Both concrete layers should have the same Profile here, i.e.

<Profile>0|-10 10|0 50|0 50|25 80|25 80|0 115|0 125|-10</Profile>

If a multilayer Slab also contains insulating layers, these insulating layers must also match the overall

Profile. A distinction must be made here between 2 cases:

a) Insulations that are inserted as fittings: These insulations are produced in a separate production

step. Their shape is not formed by the concrete formwork. These insulations are to be

represented as mountpart Outlines and do not have the same profile code as the concrete layers

below or above them (the Profile code would also be interpreted inverted for mountparts).

b) Insulations that are poured in liquid or foam form and consequently formed by the concrete

formwork: These insulations are to be represented as concrete layers, i.e. as lot Outlines. They

then carry the same Profile code as the concrete layers below or above them.

Sloped edges (DX, DY, RefHeight)28:

The fields X and Y describe the vertex coordinates on the Z-position given in Shape.RefHeight

(which is referred to the object’s Z-position). Typically, RefHeight is 0 and thus X and Y are referred

to the Z-base-position of the object.

On all other z-levels the X/Y-coordinated are given by

X + DX * (Z – RefHeight)

Y + DY * (Z – RefHeight)

28 This section describes the representation of oblique edges by using the fields DX and DY. However, when describing

the lateral concrete shape, it is recommended to use Profile, instead of DX/DY, since the Profile concept is simpler and

more powerful for lateral shapes.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page46 / 102

Therefore, if DX or DY are different from 0, the outline edge is not parallel to the Z-axis, but is

obliquely, instead. For instance, with a DX-value of 1 (and DY = 0) the edge has an inclination of 45

degree to the z-axis.

That way, oblique prisms and pyramids can easily be represented. In order to realize more general

polyhedra, a combination of several outline objects might have to be used.

It should be noted that DX and DY refer to an SVertex; an edge is therefore influenced by both adjacent

vertices. In this aspect, the DY/DY concept differs significantly from the Profile concept, since in the

Profile concept an edge is always determined only by the Profile value of the previous vertex29.

Note: When two adjacent vertex-edges do not lie in a common plane (i.e. they are skewed to each other), they cannot be

connected via a flat surface. In such a case, it isn't obvious how to define the joining surface between those two edges.

For a 3D graphical representation, it might be accurate enough to simply represent the joint surface by two triangles –

this is the easiest way, especially when considering that 3D graphics are typically build on a composition of triangles.

But in order to have a well-defined and uniform volume calculation rule, it is necessary to give a precise definition of the

joining surfaces. Here the PXML recommendation is to consider the body as a series of straight prisms with infinitesimal

heights. The volume calculation is then given as follows:

𝑉 =
𝐻𝑒𝑖𝑔ℎ𝑡

12
∑ ((6𝑋𝐿,𝑖 + 3𝑋𝐻,𝑖)𝑌𝐿,𝑖+1 − (6𝑌𝐿,𝑖 + 3𝑌𝐻,𝑖)𝑋𝐿,𝑖+1 + (3𝑋𝐿,𝑖 + 2𝑋𝐻,𝑖)𝑌𝐻,𝑖+1 − (3𝑌𝐿,𝑖 + 2𝑌𝐻,𝑖)𝑋𝐻,𝑖+1)

𝑛−1

𝑖=0

Here XL, YL are the coordinates on the lower side of the object and XH, YH are the coordinates on the upper side of the

object. The index i iterates through the polygon vertices; Height is the total height of the object.

Simplified volume calculation: For a single insulated geometric item the above exact volume calculation can be carried

without any problems. But for sloped parts with holes or inclined parts or concrete lots partially penetrated from inclined

mount-parts it might become quite complex to carry out an exact volume calculation. For most applications it will

therefore be reasonable to use a simplified volume calculation, which can be achieved by assuming all DX and DY values

to be 0.

3.9 Steel

The Steel section is a grouping of round bar irons or lattice girders.

Type attribute

The following Types are available:

• none: loose reinforcement, typically loose rebar and lattice girders with no assembly

instructions and often no indication of their spatial arrangement.

• mesh: welded or otherwise fastened reinforcement with mandatory indication of the

exact spatial arrangement of the bars and lattice girders.

• cage: Synonymous with mesh. The distinction between mesh and cage is only

historically conditioned and has at most plant-specific significance.

• extiron: reinforcement provided separately that is not specified in detail. This may be in

the format of loose rebars or more complex units such as mesh or cages. The

lattice girder section is not used for Extiron steel blocks.

Summarizing, we can say that the difference between “none” and “mesh/cage” is that with “none”

we just have a list of bars, while with “mesh/cage” we have in addition a defined assembly process

on Steel level. In this case the MeshType (see below) can give further instructions for the Steel level

processing.

29 Profile and DX/DY are alternative description methods that are difficult to use together. Theoretically, however, it is

possible to combine both specifications: the displacements in X and Y of Profile and those of DX/DY must then be

added.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page47 / 102

3.9.1 Geometric Steel Placement (X, Y, Z, RotX, RotY, RotZ)

These fields describe translation and rotation that are used for placing the Steel object within the Slab.

The sequence of the placement operations is as follows30:

1) Translation (X, Y, Z)

2) Rotation RotZ around the absolute Z axis.

3) Rotation RotY around the absolute Y axis.

4) Rotation RotX around the absolute X axis.

The translation offsets are in mm and the rotation angles are in DEG.

3.9.2 ToTurn (only for steel mesh)

Possible values are: true, false.

This specifies whether or not the mesh is to be supplied and delivered in its turned condition (turning

occurs along the longitudinal axis).

3.9.3 StopOnTurningSide (only for steel mesh)

Possible values are: true, false.

This specifies whether or not the stop side is also to be the turning side.

3.9.4 Name

Identifier for the steel block (such as the mesh identifier, for example).

3.9.5 MeshType

For Steel blocks of the mesh/cage type, machine production of the entire unit is possible in principle.

A production process can then be specified via the MeshTyp:

• 0: Standard process.

• 1: Mesh bending 2D: this mesh is to be fed to a beam bending machine.

• 2: Manual or semi-automated production of a reinforcement module (e.g., by manual

welding of automatically positioned stirrup series).

• 3: Mesh bending 3D: this mesh is to be fed to a single-head bending machine.

• 4: cover mesh (such as the cover of a cage, or of a solid wall reinforcement).

• 5: cover mesh 2D; same as type '1', but will be supplied and delivered together with a type

'4'.

• 6: cover mesh 3D; same as type '3', but will be supplied and delivered together with a type

'4'.

• 7:

• 8: loose mesh: will not be produced by the steel machine, but will be added manually

(usually, such a mesh is retrieved from the mesh warehouse).

• 9: application-specific type.

In addition to the type identifier as mentioned above, MeshType may hold other type-specific details;

the following use is recommended:

30 The described sequence has to be observed strictly. The sequence may look somewhat unusual but is motivated by

compatibility considerations.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page48 / 102

• 8#StandardSheet:R188A

Loose mesh, to be made by means of stocked mesh of the R188A type.

• 9#ProgressInfo8080:123#ProgressInfo8090:abc

Here, an application-specific type is specified that will be described in more detail via two

application-specific parameters (in this example, these parameters are identified as

"ProgressInfo8080" and "ProgressInfo8090" respectively; the values of "123" or "abc"

respectively are assigned to these parameters).

That is to say, several parameters may be specified, separated by # characters; the parameter name

and parameter value are separated by a colon.

Note: The MeshType itself describes the basic manufacturing process, but without specifying in detail

how the individual rebars are to be processed. The role of the individual rebars within the defined

manufacturing process is then only determined by the ReinforcementType of them (see Section

3.10.2).

3.9.6 WeldingDensity (only for steel mesh)

Welding density in % (integer value).

Values between 0 and 100 may be specified. In addition, high-order digits may be used to encode

additional information:

 a = WeldingDensity mod 1000

 b = WeldingDensity div 1000.

The value of a will determine the welding density; the value of b is available for additional plant-

specific information.

If WeldingDensity has a value of 0 or DBNull respectively, this will stand for "Default"; depending

on the plant or facility, this may be 0%, 100% or any other value.

Please note: the specified welding density is to be understood as inner welding density; additional

welding points will be inserted at the edge of the mesh (see BorderStrenght).

3.9.7 BorderStrength

Reinforcement of the edge of the mesh. A value of 0 or DBNull respectively stands for the plant-

specific default. A value of 1 means that the outermost row will be welded at a rate of 100%; a value

of 2 means that the two outermost rows will be welded at a rate of 100%.

3.9.8 Generic Steel Info

Freely usable informational lines.

3.9.9 Steel Production Directices (ProdX/Y/Z, ProdRotX/Y/Z)

The Steel Production Directives fields describe a placement of the Steel block (typically the cage)

during reinforcement, which, however, does not relate to the finished product, but is merely to be

understood as a recommendation to the reinforcement production machine. That is to say, the

reinforcement cage is not to be installed into the concrete element in its rotated or moved form but is

merely to be positioned preliminarily only for ease of production. Of course, the reinforcement

production machine is at liberty to follow this recommendation, or to decide independently which

way around the cage is to be turned for ease of production respectively31.

The ProdRot angles must be specified in DEG units, and the sequence of the operations is as follows:

1) Rotation ProdRotZ around the absolute Z axis.

31 Please note: usually, rotation merely bears on the round-bar steel only, but not the lattice girders.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page49 / 102

2) Rotation ProdRotY around the absolute Y axis.

3) Rotation ProdRotX around the absolute X axis.

4) Translation ProdX/Y/Z

Finally, the production position of the reinforcement results from the concatenation of the following

operations:

1) Steel.X/Y/Z

2) Steel.RotZ

3) Steel.RotY

4) Slab.RotX

5) Slab.X/Y/Z

6) Slab.RotZ

7) Slab.RotY

8) Slab.RotX

9) Slab.ProdRotX

10) Slab.ProdRotY

11) Slab.ProdRotZ

12) Slab.ProdX/ProdY/ProdZ

13) Steel.ProdRotZ

14) Steel.ProdRotY

15) Steel.ProdRotX

16) Steel.ProdX/Y/Z

If you combine rotational and shifting operations of a step into one rotational shift H each, you have

the following sequence:

1) HSteel

2) HSlab

3) HSlabProd → Assignment

4) HSteelProd → Arrangement

Or written as operator multiplication:

𝐻𝑡𝑜𝑡𝑎𝑙 = 𝐻𝑆𝑡𝑒𝑒𝑙𝑃𝑟𝑜𝑑 ∙ 𝐻𝑆𝑙𝑎𝑏𝑃𝑟𝑜𝑑 ∙ 𝐻𝑆𝑙𝑎𝑏 ∙ 𝐻𝑆𝑡𝑒𝑒𝑙

Often HSlabProd is referred to as “assignment” (pallet assignment, bed assignment) and HSteelProd as

“arrangement”.

Process sequence of assignment and arrangement: Im Arbeitsvorbereitungsprozess wird die Belegung meistens vor

dem Arrangement festgelegt. Das passt gut zur oben definierten Operator-Reihenfolgen, da das Arrangement sich dann

auch eine vorgegebene Belegung bezieht. In Szenarien komplexer Bewehrungsproduktion kann es aber auch vorkommen,

dass das Arrangement bereits optimiert wird, bevor die Belegung festgelegt wird. Da sich das Arrangement aber auf eine

gegebene Belegung bezieht, muss beim nachträglichen Verändern der Belegung auch das Arrangement angepasst werden,

um das effektive Arrangement faktisch unverändert zu lassen.

Konkret: wenn wir mit �̂�𝑆𝑡𝑒𝑒𝑙𝑃𝑟𝑜𝑑 das Arrangement bezeichnen, das vor dem Setzten der Belegung optimiert wurde, so

muss man, wenn man nachträglich 𝐻𝑆𝑙𝑎𝑏𝑃𝑟𝑜𝑑 setzt, 𝐻𝑆𝑡𝑒𝑒𝑙𝑃𝑟𝑜𝑑 anpassen:

𝐻𝑆𝑡𝑒𝑒𝑙𝑃𝑟𝑜𝑑 = 𝐻𝑆𝑙𝑎𝑏𝑃𝑟𝑜𝑑 ∙ �̂�𝑆𝑡𝑒𝑒𝑙𝑃𝑟𝑜𝑑 ∙ 𝐻𝑆𝑙𝑎𝑏𝑃𝑟𝑜𝑑
−1

3.9.10 Layer

Used only for multi-layer elements; defines the layer to which the item belongs.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page50 / 102

3.9.11 ObjectID

See the corresponding section on Outline objects, section 3.8.10.

3.10 Bar

A Bar entry corresponds to round-bar steel element, viz. a straight or bent rebar.

3.10.1 ShapeMode

Via ShapeMode, one can select the type of representation for the rebar geometry. For straight rebars,

this option is rather immaterial; for complex bending shapes, however, data representation can be

largely adjusted to the internal representation in CAD through appropriate selection of ShapeMode.

The effort or time used to implement data export from CAD can thus be decisively reduced.

3.10.1.1 ShapeMode "realistic"

All rebars are specified with the correct bending radii and correct spatial coordinates (the bending

radii may also be given via the BendingDevice). The relative spacing of the rebars must also be taken

correctly into consideration. This representation can be used without any limitation as it directly

reflects the product to be produced, thus leaving no room for interpretation.

In this representation, the type of reinforcement has no geometric meaning as the geometry is clearly

defined even without a need to know the type of reinforcement.

The realistic ShapeMode is the recommended representation type, because it is most universal

and unambiguous.

3.10.1.2 ShapeMode "schematic"

SchematicMode is a simplified representation whereby the rebars will be drawn with a bending radius

of 0:

For bending angles of up to 90°, the bending shape simply is rather more "angular" than in reality.

For bending angles above 90°, however, the outer shape will be shown distorted.

Here, the spatial absolute position of the rebars should be set as follows:

• Independent rebars (Master rebars): here, the rebar coordinates are set such that the L0

segment (= main or master segment) takes the real position.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page51 / 102

• Dependent rebars (Slave rebars): Slave rebars are typically strung along the Master rebar such

that the rebars intersect at their core.

Master/Slave relationships may be defined either explicitly through a master rebar staggering

pattern32, or else implicitly via the type of reinforcement: two rebars of a type of reinforcement of

1and 2 will be mutually interrelated in a Master/Slave relationship if they intersect at the rebar core

(here, the type 1 rebar will be the Master and the type 2 rebar will be the Slave)33.

If we specify the rebars such that they intersect at the core, we will need a formal additional rule that

will specify in what way the rebar layers will be mutually staggered in reality. Hence, the following

shall apply to Master/Slave rebars that intersect each other at their core:

For straight Master rebars, the Slave rebars will be on top (viz. type 1reinforcement at the

bottom, type 2reinforcement at the top). For bent Master rebars, the Slave rebars will be

inside34.

3.10.1.3 ShapeMode "polygonal"

Polygonal representation is similar to schematic representation, and the majority of the rules

described above can be applied without any modification. Contrary to schematic representation,

however, not the common rebar lengths are specified here, but rather the edge length of the polygon

that covers the real bending shape.

For bending up to 90°, the representations of schematic and polygonal tally with each other. However,

both representations differ when it comes to acute bends: the polygonal representation remains true

to the real shape of the rebar, whereas the schematic representation modifies the outer proportions35.

For "external radius bends" on the rebar ends, the polygonal representation will often appear

unnatural, and for 180° bends it will even be impractical (as the polygon legs would be infinitely

long). In such an instance, you may want to divide an acute bending angle 𝛼 into two angles𝛼1and𝛼2,

and introduce an additional edge in between these bends that will have the following length:

𝐿𝑘 = 𝑅 ∙ (tan
𝛼1

2
+ tan

𝛼2

2
), 𝛼1 + 𝛼2 = 𝛼

Whereby 𝑅 is the bending radius at the rebar center or core.

Typically, 𝛼1is given by the outer shape of the polygon, and 𝛼2merely completes the bend such as to

obtain the desired overall angle𝛼. The polygon edge 𝐿𝑘to be introduced artificially can then be

determined as described above. Following conversion to the realistic mode of representation, the

additional edge will be reduced to a segment of a length of 0, which will then be omitted for logical

reasons – the two bending angles𝛼1and 𝛼2will then merge into one overall angle𝛼.

32 Master rebar staggering pattern: see Section 3.12.1.
33 Similarly, a type 4 rebar may be a Slave in its relation to a type 2 rebar. However, this multi-state dependence is only

used for very complex cages. (For a definition of the types of reinforcement, refer to Section 3.10.2).
34 In practical cases, it will be fairly obvious which is inside and which is outside. A general mathematically precise

definition of outside or insidecan be stipulated as follows:

If 𝑣𝑖⃗⃗⃗ are the vectors of the rebar segments and𝑎 ∶= ∑ 𝑣𝑖⃗⃗⃗
𝑛−2
𝑖=0 × 𝑣𝑖+1⃗⃗ ⃗⃗ ⃗⃗ ⃗, then 𝑎 × 𝑣𝑖⃗⃗⃗ will face inwardly.

35 In the above example, the cage has an identical height in both, polygonal representation and realisticrepresentation; in

schematicrepresentation, it would have a smaller height.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page52 / 102

Having regard to this splitting of angles, the polygonal mode of representation will turn into a very

universal one that will have an edge over the schematic mode of representation36.

The dependence of 𝐿𝑘on 𝑅 will introduce a certain redundancy into the data as 𝐿𝑘conclusively results

from 𝑅. As a matter of fact, we may select𝐿𝑘to be smaller or even set it to 0 as the system receiving

these data will know that each polygon leg will have to have at least the length mentioned above.

Then there will be a deviation of the polygon from the real rebar shape, however, this typically only

relates to end roundings, such that the overall shape of the rebar will be displayed undistortedly.

3.10.1.4 Automatic determination of ShapeMode and mixed representation

Often, no ShapeMode will be specified, specifically when the data are imported from UNICAM or

BVBS files. As different CAD systems will use different types of representation, data without

specified ShapeModemust be considered to be incomplete37.

In UNICAM files, the ShapeMode is sometimes (as an extension of the formal definition) mapped in

the spare field RODSTOCK, line 5, columns 9-11:

- 000 = undefined

- 001 = schematic

- 002 = polygonal

Some CAD systems use a mixed representation: the bended bars are drawn in schematic mode, but

the straight bars are set at their actual position in space. The bars do not intersect in the core and

therefore there is no automatic position adjustment of those bars.

3.10.2 ReinforcementType (reinforcement layers)

3.10.2.1 Definition of reinforcement type

The types of reinforcement largely follow the UNICAM definition; however, additional definitions

were introduced for cage production:

0 = no definition.

1 = first rebar layer; for cage production: stirrups.

2 = second rebar layer; for cage production: longitudinal rebar.

3 = spears.

36 The mentioned division of angle may also be done in schematic representation; this will help avoid having to specify

bending angles of more than 90°, and would result in perfect congruence between the schematicand polygonalmodes of

representation. However, the advantage of the polygonal mode of representation lies in the option of specifying acute

bending angles through acute polygon angles geometrically true – this is not feasible in the schematicmode of

representation.
37 There are useful approaches to systematically conjecture the intended ShapeMode: Data with an explicit specification

of bending radii or bending roll diameters will typically appear inrealisticmode; data that do not come with these

details will mostly appear in schematicmode. However, this rule does not apply unconditionally.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page53 / 102

4 = other reinforcement (third rebar layer).

5 = upper reinforcement of first rebar layer.

6 = upper reinforcement of second rebar layer.

7 = upper reinforcement other rebars (upper reinforcement of third rebar layer).

8 = loose rebars (not welded, not connected to any other rebars).

For Extirons, the ReinforcementType is equivalent to UNICAM Extiron-Type.

3.10.2.2 How to set the reinforcement types

The exact meaning of the individual reinforcement types depends on the actual manufacturing

process. If there are several manufacturing processes in a plant, the meaning of the ReinforcementType

field may therefore vary with the MeshType of the Steel block (see also section 3.9.5).

In general, however, the following recommendations can be given for the use of reinforcement types:

ReinforcementType 1, 2 and 4:

For flat wire mesh, one would select the reinforcement layer immediately above the desired layer of

the rebars: those rebars that are at the bottom in the production pallet (= on the outside in the double

wall) will form layer #1, the rebars on top of that will form layer #2.

The following stipulation is recommended for bent wire mesh or cages:

a) If bending occurs in one direction only, this should be the first layer that will be bent.

b) If bending occurs in either direction, it should be feasible to bend the first layer last when the

wire mesh is unrolled.

Here, item b) is to be understood such that, when unrolling the wire mesh, the first layer must be

unrolled first, then the second one. When unrolling the first layer, adjacent layer #2 rebars will be

carried along; when the second layer is unrolled thereafter, no layer #1 rebars will be carried along

anymore38.

Layer #1 may also be considered to be the main layer or stable layer: coordinate corrections for the

wire diameter or bending radii will be dominated by layer #1; layer #2 will adapt to layer #1, but not

the other way around.

ReinforcementType 8:

ReinforcementType 8 identifies a rebar as a "special case" within the manufacturing process in

question. If, for example, a steel block is produced using a mesh welding system (which can possibly

be specified by the MeshType), then ReinforcementType 8 would specify that the bar in question is

not to be welded. If, on the other hand, the entire Steel block is to be subjected to a manual

manufacturing process, this should be specified via the MeshType.

3.10.2.3 Upper reinforcement layers

Reinforcement types 1, 2 and 4 together form a coherent set of "layers" as described above.

Reinforcement types 5, 6 and 7 form a second independent set for which the same rules apply as for

the first set of layers.

The second ("upper") set of layers will only be absolutely necessary if two independent sets of layers

are required within one Steel block (layers in differentSteel blocks independent of each other anyway).

In practice, this should occur very rarely only as complex reinforcement cages are usually split into

38 Should there be any rebars that must be carried along when the second layer is unrolled, the same must be assigned to

a third layer (for this purpose, select ReinforcementType = 4, "other reinforcement"). To be able to produce such rebars

as mesh rebars, a beam bending machine is required in the longitudinal direction and in the transverse direction; failing

this, such rebars must be produced as loose rebars, and welded manually. Rebars not connected to others, viz. that are

not to be unrolled or bent with the other rebars, will be assigned to ReinforcementType #8.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page54 / 102

several Steel blocks which will usually be produced at different times even (for example, cf. the

"cover mesh" for solid walls).

Thus, the upper layers are mainly required for compatibility to UNICAM. PXML implementations

should treat the upper and lower layers equally as there may well be a Steel block that will only

include upper layers39.

3.10.3 SteelQuality

Steel quality.

3.10.4 PieceCount, Diameter, X, Y, Z

Quantity, diameter, and offsets.

3.10.5 RotZ

To determine the position of a rebar, the coordinate system is (after having been moved by X/Y/Z)

rotated through the angle RotZ through the z-axis. All other indications of directions or orientations

will then relate to the coordinate system thus rotated (see also the segment orientation, Section

3.10.16.1).

The allowable range for RotZ is:

RotZ]-180°, 180°].

RotZ defines the direction or orientation of installation of the rebar, and is roughly equivalent to the

angle to the x-axis in UNICAM (however, the latter being in the range of [-360, 360°[). Thus,

assuming the first section of the rebar (or the whole rebar respectively) to be in the xy plane, RotZ

will be the angle enclosed by the rebar and the x-axis.

For the general case, it is somewhat more complex to define RotZ:

Let's assume, the bending plane of the first bending intersects the xy plane; RotZ would then be the

angle enclosed by the line of intersection with the x-axis.

Or more specifically: if �⃑�0 and �⃑�1 are the first two sections of the rebar, then

𝑅𝑜𝑡𝑍 = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑣0𝑦𝑣1𝑧−𝑣0𝑧𝑣1𝑦

𝑣0𝑥𝑣1𝑧−𝑣0𝑧𝑣1𝑥
) + 𝑘𝜋.

(It may indeed happen that the denominator is 0; the result will then of course be ±
𝜋

2
. The result will

only be really undefined if the denominator and the numerator are 0; this case will occur if �⃑�0 and

�⃑�1 are parallel or antiparallel, or if both of them lie in the XY plane, or if we have only one single

segment).

In addition, the above equation contains the undetermined addend of 𝑘𝜋, where k equals 0 or is ±1.

As a matter of fact, this consideration does not define this detail as one direction or orientation is

initially as good as the one opposite by 180 degrees. To define k, one could request that the projection

of �⃑�0 define the direction or orientation, that is to say that40:

𝑣 𝑟 ⋅ 𝑣 0 ≥ 0 for 𝑣 𝑟: = (𝑐𝑜𝑠(𝑅𝑜𝑡𝑍), 𝑠𝑖𝑛(𝑅𝑜𝑡𝑍),0)

Derivation of the equation for RotZ:

Let's assume 𝜆 to be such that

39 The upper steel mesh ("cover mesh") of solid walls, for example, might exclusively include upper layers only.

However, this should be irrelevant for a PXML implementation.
40 This limitation does not only result in an intuitively meaningful RotZ, but also simplifies other computations, as we

will see in Section 3.10.16.12.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page55 / 102

𝑣 0 − 𝜆 𝑣 1 = (

𝑥𝑝

𝑦𝑝

0
).

The point (𝑥𝑝 , 𝑦𝑝) is the projection of �⃑�0 in the XY plane for projection along the vector �⃑�1. From the Z component of

the above equation, we obtain 𝜆 = 𝑣0𝑧 𝑣1𝑧⁄ .

Because of𝑅𝑜𝑡𝑍 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑦𝑝/𝑥𝑝) , we obtain the above relationship for RotZ.

As mentioned, there will be a problem if 𝑥𝑝 = 𝑦𝑝 = 0. In this instance, it will help to merely consider

the projection of the first section only:

𝑅𝑜𝑡𝑍 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑣0𝑦, 𝑣0𝑥), (or 𝑅𝑜𝑡𝑍 = 0 for 𝑣0𝑥 = 𝑣0𝑦 = 0).

Remark: Basically, it is unnecessary to specify RotZ as any change of direction or orientation can be implemented for

any RotZ using appropriate segment angles RotX and BendY (see Section 3.10.16.1). RotZ was merely introduced to be

able to treat the significant case of constant bending plane in a straightforward and illustrative manner. For this reason,

the above definition of RotZ is to be understood as a mere recommendation only. On principle, it is within everybody's

discretion to set RotZ as he or she may see fit, or not to use it at all (i.e. to leave it at RotZ=0).

3.10.6 ArticleNo

Article identifier of the round steel rebar.

3.10.7 NoAutoProd

This will be set if the rebar is not to be automatically produced by the steel machine.

It is typically used for in-stock products that were pre-produced in standard lengths and that are thus

excluded from just-in-time production.

3.10.8 ExtIronWeight

The weight of an ExtIronrebar in kg. This is exclusively used for ExtIronrebars only (as these

generally do not have any dimensional details).

3.10.9 Bin

To assign a bin (such as a carriage bin of the steel machine, for example).

3.10.10 Pos

Text field for entering the single rebar drawing reference.

3.10.11 Note

Text field for entering a comment regarding the rebar.

3.10.12 Machine

Text field for specifying the production machine.

A machine-internal production list may optionally be treated as a separate machine in itself. In this

case, it is recommended to select the following format:

MSR:2

In this example, "MSR" indicates the machine as such, and "2" is the number of the production list.

3.10.13 BendingDevice

Bending device. This is a text field in which you would normally specify the diameter (in mm) of

the bending die to be used. As this is a text field, however, this indication may also be of a more

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page56 / 102

general nature (such as a description of the die). This field is mapped onto the header field 's' in

BVBS41.

Often, the specification of the BendingDevice will imply a minimal bending radius. For a bending

die of a diameter D, a wire with a diameter d will have a minimum bending radius of

𝑟𝑚𝑖𝑛 =
𝐷

2
+

𝑑

2
+ 𝑘𝑟.

(kr being the radius correction value due to spring-back, i.e. the difference between the inner radius

of the bent wire and the radius of the bending matrice. Simplifying, this value is most often

considered as being 0)42.

This will, of course, result in a potential conflict with the bending radius indication of the segment

(see Section 3.10.16.3). In such a case, the larger bending radius will always be relevant.

3.10.14 Spacer

A Spacer entry describes a single spacer. As opposed to some other formats, spacers will always be

listed separately in PXML (so there will be no option to enter a fixed pitch or division).

3.10.14.1 Type

Spacer Type; corresponds typically to the concrete cover in mm, divided by 5.

3.10.14.2 Position

Position of the spacer along the rebar. The position details will relate to the theoretical lengths.

3.10.15 WeldingPoint

3.10.15.1 WeldingOutput

Welding output in %.

3.10.15.2 Position

Position of the welding point along the theoretical path of the rebar.

3.10.15.3 WeldingPointType, WeldingPrgNo

WeldingPointType contains a type identifier for the welding point.

WeldingPrgNo directly determines the welding program to be used. The exact meaning of this value

depends on WeldingPointType and the used machine.

The following values of WeldingPointType are predefined:

• 0: Undefined type

• 1: Generic Welding Point

• -1: Point that must not be welded

• -2: Label fixing point

41 In UNICAM, this field (as an extension of the formal definition) will be mapped onto the spare field RODSTOCK

line #5, columns #5-7, but merely numerical values are entered here, and no more than three (3) characters only.
42 The consideration of kr is only necessary when high accuracy is needed. In practice, this can occur when stirrups or

cages are processed automatically. Then the overall geometry of the bent bar need to be well known, and its geometry

depends on kr if some bending angles exceed 90 degrees. But above all, there is the need to know the exact real

segment lengths on unrolled bars. It is therefore recommended to determine kr by measuring the real lengths on the

bars. Doing so, kr will not just consider the spring-back factor, but will also include the fact that center line of the wire

may be lengthened due to bending (this will result in a slightly increased kr).

It must be noted that kr is not a constant value. The spring back value is typically more important for small wire

diameters.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page57 / 102

• -3: Color point (if multiple colors are available, the WeldingPrgNo may be used for

specifying the color type)

• -17: Mark for main segment ("L0" segment). A segment that is marked in this way should be

used as a central and stable segment during production.

• -23: BendingStep. Marks a bending step in which the specified segment is moved in a

bending action.

The WeldingPrgNo determines whether the bending occurs at the begin or the end of the

segment: a negative WeldingPrgNo specifies to bend at the end.

The GroupID may be used for grouping bendings and identifying these groups for external

references. The sequence of BendingSteps occurrences within a bar defines a supposed

bending sequence when producing the bar. While the effective bending sequence may differ

from that, the supposed bending sequence is relevant when determining welding points

between layers.

• -29: GuidedPoint. Marks a point on a "guided bar" that is connected to a "guiding bar" in

such a way that the guided bar moves when the guiding bar is moved or bent up.

The GroupID is used to assign a GuidedPoint to the respective GuidingPoint.

• -30: GuidingPoint. Marks a point on a "guiding bar" that is connected to a "guided bar" in

such a way that the guided bar moves when the guiding bar is moved or bent up.

The GroupID is used to assign a GuidedPoint to the respective GuidingPoint.

• -100: GrippingPoint. Marks a point where a bar is gripped to transport the bar or mesh.

The negative type values specify points that are not really welding points but are somewhat similar

in their handling.

3.10.15.4 GroupID

The GroupID field can be used to link different welding points to each other. Typically, welding

takes place on the cross point of two bars. Both such bars have a PXML WeldingPoint placed on that

cross point and these two PXML WeldingPoint items can be linked together by assigning the same

GroupID to them.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page58 / 102

3.10.16 Segment

A Segment is a section of a round steel rebar. A straight rebar consists of precisely one segment;

bentrebars have one segment for each section thereof (i.e. for n bends, there will be n+1 segments).

The first section will commence at the X/Y/Z coordinates specified for the respective rebar; each

further section will then commence at the end of a respective previous section.

It is optional to specify the Type attribute. The Type attribute may have the following values:

• Type = "normal": the segment describes a normal line segment (this is the default-type).

• Type = "spiral": the segment describes a spiral. See Section 3.10.16.10

3.10.16.1 Segment-Orientation (RotX, BendY)

For each section, two angles RotX and BendY will be specified that will describe a rotation of the

coordinate system: the coordinate system will at first be rotated around the x-axis, through the RotX

angle; and will then be rotated around the new negative y-axis through BendY43.

 RotX[-90°, 90°] (conditional only44).

 BendY]-180°, 180°] (conditional only45).

Now, the x-axis of the rotated coordinate system specifies the direction of the respective segment.

The rotation of the various sections will add up, that is to say for the second section , the coordinate

system of the first section (rotated previously already) will be rotated yet again.

RotX rotates the bending plane, and BendY reflects the bending angle (except for the first segment).

3.10.16.2 Segment-Length (L)

The Segment length L (in mm) corresponds to what is often called the theoretical length of the

section (as measured at the center of the rebar). If the bending radius R is larger than 0, the length L

will deviate from the real length of the rebar.

For the representation of spirals (see Section 3.10.16.10), L will indicate the arc radius.

3.10.16.3 Bending-Radius (R)

The Bending radius R describes the curvature of the bends (in mm).

If this value is 0, the various systems can autonomously take a bending radius, and make a respective

correction of the length.

The bending radius indication of the first segment must be ignored and is always assumed to be 0.

The same will apply to the first segment after a spiral.

For spirals, the value of R is also ignored (see Section 3.10.16.10).

The side length L of a segment is to be understood as a theoretical length; forR>0, the real length is

different from L.

43 The negative Y-axis is used for BendY to keep the bending angle compatible to BVBS and UNICAM.
44 By definition, RotX may take any value. However, it is recommended to use values between ±90° as this range is

adequate to represent any shape: RotX values off this range can be transformed into this range through adding (or

subtracting) 180° if all following BendY are inverted at the same time. Such restriction to the range between ±90°

makes representation more unambiguous, and will avoid the case of RotX=±180° that would unnaturally complicate

things, as this case could also be described via RotX=0.
45 The restriction of BendY to values between ±180° will only be rational for a bending radius of R=0; forR>0, BendY

may be within the range of ±360°. Finally, to facilitate the representation of spirals of any length in an easy manner, it

is allowed in PXML to specify any value forBendY, viz. even values beyond the range of ±360°.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page59 / 102

For a definition of theoretical lengths, refer to the following Figures:

For angles not larger than 90°, R will have no effect on the bending shape, but merely results in the

corners being rounded. The basic shape will then be given by the theoretical lengths. For bending

angles beyond 90°, R will have a direct effect on the overall dimensions.

Radius definition via specification of BendingDevice:

As an alternative to directly entering the radius in the segment, there may be an implicit determination

of the bending radius via the BendingDevice (see Section 3.10.13). If both are given

(viz. BendingDevice and R), the larger radius will be relevant.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page60 / 102

3.10.16.4 External dimensions

Normally, center dimensions are always taken into consideration, i.e. all dimensions relate to the

center of the rebar, often called the core of the rebar. In some instances (specifically when designing

complex bending shapes), it will be helpful to consider external dimensions instead.

A segment's external dimension will only be specified unambiguously once a direction of

dimensioning will have been specified.

The above Figures show how the segment's external dimensions are defined for different directions

of dimensioning. The direction of dimensioning (viz. direction of the blue arrow) defines two

extension lines p and q (the gray lines) that are orthogonal to the direction of dimensioning. The

segment's external dimension is equivalent to the distance between the extension lines p and q. The

segment's external dimension will be positive if the perpendicular from p to q is parallel to the

direction of dimensioning; this measure will be negative if the perpendicular from p to q is

antiparallel to the direction of dimensioning (p is the extension line at the beginning of the segment,

q is the extension line at the end of the segment respectively).

Fig. 1: If possible, p and q will be tangents (of the arc exterior).

Fig. 2: Here, p cannot be a tangent. Instead, p runs through the point of intersection P of the two

end-tangents of the arc.

Fig. 3: Here, neither p nor q is a tangent; the lines are defined via the points of intersection P and

Q.

Fig. 4: If a segment has no bend at one end (first or last segment), dimensioning will relate to the

rebar center (however, this is not true for conventional external dimensions; see Section

3.10.16.8).

Fig. 5: The positive distance is always counted from pto q (p at the beginning of the segment). If

this is opposed to the direction of dimensioning, the distance will be negative.

For bending angles equal to or larger than 180°, the above definition is ambiguous. In such an

instance, the extension or projection line is drawn such that it is the tangent of the first section of the

bend (as if the bending angle was less than 180°).

Formal definition: The measuring points P and Q are either tangent points or points of intersection

of the end-tangents (whereby merely arcs smaller than 180° are taken into consideration only). The

segment's external dimension is the inner product of the vector PQ with the unit vector in the

direction of dimensioning.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page61 / 102

3.10.16.5 External length of segment

The external length of a segment is the segment'sexternal dimension that runs in the direction of the

segment. (The segment'sexternal dimension is defined according to Section 3.10.16.4.).

3.10.16.6 Height and width of segment

To be able to use the height or width of a segment, we first need to define a main direction. It then

holds:

Width = segment external dimension in the main direction, and

Height = segment external dimension perpendicular to the main direction (at an angle of +90° in

relation to the main direction).

3.10.16.7 Rules for computing external dimensions

The definition of the external dimension may extended to cover a series of segments. Here, it can be

easily demonstrated that the external dimensions are additive, i.e. the external dimension of the series

of segments is equal to the sum of the external dimensions of the various segments46.

Such additivity may also be used to partition an individual segment into elementary subsegments;

here, a normal segment may be treated as a series of 3 segments:

1) a segment with a bend at the beginning, a straight section of a length of 0, no bend at the end;

2) a straight section; and

3) a segment without a bend at the beginning, a straight section of a length of 0, a bend at the

end.

46 Naturally, said additivity of the external dimensions will only apply if the same direction of dimensioning is used for

all external dimensions and if the correct sign is assigned to all external dimensions. For example, a segment being

orthogonal to the direction of dimensioning and having 90° at the beginning and -90° at the end respectively will have

an external dimension that will be equal to the negative wire diameter.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page62 / 102

3.10.16.8 Conventional external dimensions

If a segment end does not have a bend, the external dimension will relate to the rebar center (rebar

core). This has been defined that way so as to create theoretical relations that are as simple and as

possible.

For the user, however, it may seem rather unnatural to have a reference to the rebar center at the

beginning and the end of the rebar each. For this reason, the term of conventional external

dimension is introduced here: here, no reference is made to the rebar center at the beginning and end

of the rebar, but rather to the exterior of the rebar, viz. to that side which is also used for the

dimensioning of the other end of the segment47.

3.10.16.9 General computations for the bending radius

The following holds for the length b of the arc of a bend around :

𝑏 = 𝑅 ⋅ |𝛼|.

The following holds for the straight section ℓ:

ℓ = 𝐿 − 𝑑, 𝑑 = 𝑅 𝑡𝑎𝑛(
𝛼𝑀

2
), 𝛼𝑀: = 𝑚𝑖𝑛(|𝛼|,  90°)

Thus, the following holds for the real length LR of the rebar:

𝐿𝑅 = ℓ +
𝑏

2
= 𝐿 +

𝑏

2
− 𝑑 = 𝐿 + 𝑅(

|𝛼|

2
− 𝑡𝑎𝑛(

𝛼𝑀

2
)).

Naturally, all of the above will only hold if 𝐿 >= 𝑑 , or, in other words, if:

𝐿 >= 𝑅 𝑡𝑎𝑛(
𝛼𝑀

2
).

There are various options to force these conditions; here, the easiest one obviously is to increase L

to the above minimum value, if required.

3.10.16.10 Arcs and spirals in traditional "spiral form"

Traditionally, arches and spirals are dealt in a particular form and are somehow explicitly described

as special arc-like shapes. To maintain compatibility with older systems, PXML offers such a

possibility, too, i.e. it defines a particular spiral segment type48.

A spiral segment is identified through the Type identifier "spiral".

For spirals, the segment parameters have the following meaning:

• BendY: turning angle of the spiral

(may take any value, viz. is not limited to ± 360°).

• L: radius of the spiral.

• R: does not have any relevance and is thus ignored49.

• RotX: defined the pitch of the helix50.

The increase in height per torsion is 𝐺 = 𝐿 ⋅ sin (𝑅𝑜𝑡𝑋).

Connecting the arc to the straight segment:

47 This is not defined for a straight rebar. However, in this instance it doesn't make a difference whether we relate

dimensioning to the core of the rebar or to an exterior of the rebar.
48 Although spiral segments are provided in PXML, newer systems should consider to describe the arches in normal

PXML representation, as will be described in Section 3.10.16.11.
49 Please note: the Specification declares that R be ignored, and thus may take any value. It is not at the discretion of the

implementations to make any other use of R and thus to restrict the freedom when setting R. This declaration is

necessary because the radius R is often set for all segments via higher-ranking parameters (e.g. bending die parameters)

– in such an instance, it should not be necessary to exclude spirals.
50 The option of specifying a true RotX for spirals is refrained from deliberately as this will hardly ever be necessary in

practice. However, should this actually be necessary on a few rare occasions, an auxiliary segment of a length of 0

must be prefixed to the spiral.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page63 / 102

If arcs (spirals) are connected to straight segments, the transition between the arc and the line segment

will always be without a bend. At the beginning of the arc, this must be so due to the mere fact of the

data format: as BendY describes the arc angle, it is not possible to additionally specify a bending

angle. At the end of the arc, viz. at the beginning of the next straight segment, it would be basically

possible to specify a bend. However, this degree of freedom is not to be used, i.e. the following

segment is to have BendY=0. This restriction is meaningful with a view to having symmetrical

relationships at the beginning and the end of the arc, and to altogether simplifying the computational

relationships. Moreover, this restriction blends in well with the BVBS encoding and the functional

principle of the bending machines: in either case, bends must be encoded via separate segments at

the beginning and the end of the arc.

Spirals and type of representation:

The treatment of spirals is basically defined for the realistic type of representation only (see

ShapeMode, Section 3.10.1). The schematic or polygonal concepts of representation cannot be

combined with the concept of representation for spirals in any meaningful way, and both concepts

also belong to very different domains in terms of applications engineering.

3.10.16.11 Arcs in ordinary PXML form

In PXML, an arc can also be represented merely as a bending. In such an instance, the arc will not

be separately identified as such and will merely differ from a standard bending in that it has a large

bending radius and that it thus will typically not be produced through bending over a die plate, but

rather through other machine devices. As a matter of fact, however, it may be better not to anticipate

the type of machine processing in the data, but rather to leave this to the machine software instead;

here, PXML data will be limited to a geometrical description of the product without actually

specifying the manufacturing process or technology.

If arcs are described using standard PXML segments the following will have to be taken into

consideration:

a) There may be no bending at the beginning of the first segment. That is to say, at least two

segments will be required to render a curved iron. (And this is the only real drawback of the

standard PXML segments as compared to the spiral segments.)

b) If there is a bending upstream of the arc, the same must be accommodated in a separate

segment. (This is the same for spiral segments.)

c) An arc is already fully defined by its radius and angle. The L-value of the segment is

redundant and should have precisely the value of 𝐿 = 𝑅 𝑡𝑎𝑛(𝛼𝑀 2⁄) (see Section 3.10.16.9).

To avoid this redundancy in the data, it is recommended to set L=0. (Except where there is a

straight segment downstream of the arc in which case L is accordingly larger

than𝑅 𝑡𝑎𝑛(𝛼𝑀 2⁄)).

d) Representation of a flute height of spirals is (currently) unprovided for.

Example 1: simple arc

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page64 / 102

An arc with an arc radius of 1,000 mm (core dimension) and an angle of 240° will be represented via

two segments:

Segment 1: L=0, BendY=0, R=0

Segment 2: L=0, BendY=240, R=1000

The length of this arc is 4189 mm; this length is not explicitly specified as it can be calculated from

the radius and angle. Again, the segment length L (as mentioned above) is not specified, or is simply

set to be 0.

Example 2: arc with end hooks

Segment 1: L=500, BendY=0, R=0

Segment 2: L=0, BendY=120, R=0

Segment 3: L=0, BendY=-240, R=1000

Segment 4: L=500, BendY=120, R=0

Example 3: arc with end hooks with a bending radius

Segment 1: L=404, BendY=0, R=0

Segment 2: L=0, BendY=104, R=200

Segment 3: L=0, BendY=-208, R=1000

Segment 4: L=404, BendY=104, R=200

The red lines and red numbers in the figure delimit the segments.

The shortening of the angles by approx. 16° (=120°-104°) can be determined via the following

relationship:

∆𝛼 = 𝛼 − acos
𝑅2 + 𝑅3 ∙ cos 𝛼

𝑅2 + 𝑅3
= 120° − acos

200 + 1000 ∙ cos 120°

200 + 1000
= 15,52°

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page65 / 102

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page66 / 102

3.10.16.12 General computations for coordinate rotation

There are three types of coordinate rotation:RotZ, RotX and BendY. Rotation around the z-axis (RotZ)

occurs only once for each rebar, and is virtually freely selectable as has been explained above.

Rotations around the x-axis or the y-axis (RotX or BendY) can be specified for each section.

Let's assume 𝑣being the coordinate representation of a vector in the original coordinate system and

𝑣 ′ the respective representation in the rotated system; then, in such an instance, transformation will

be described through a rotation matrix D as follows:

𝑣 ′ = 𝐷 ⋅ 𝑣.

The following holds for the rotations mentioned above51:

𝐷𝑅𝑜𝑡𝑍 = (
cos 𝑅𝑜𝑡𝑍 sin𝑅𝑜𝑡𝑍 0

− sin𝑅𝑜𝑡𝑍 cos 𝑅𝑜𝑡𝑍 0
0 0 1

)

𝐷𝑅𝑜𝑡𝑋 = (
1 0 0
0 cos𝑅𝑜𝑡𝑋 sin𝑅𝑜𝑡𝑋
0 − sin𝑅𝑜𝑡𝑋 cos 𝑅𝑜𝑡𝑋

)

𝐷𝐵𝑒𝑛𝑑𝑌 = (
cos𝐵𝑒𝑛𝑑𝑌 0 sin 𝐵𝑒𝑛𝑑𝑌

0 1 0
− sin𝐵𝑒𝑛𝑑𝑌 0 cos𝐵𝑒𝑛𝑑𝑌

)

𝐷𝑅𝑜𝑡𝑋,𝐵𝑒𝑛𝑑𝑌 = 𝐷𝐵𝑒𝑛𝑑𝑌 ⋅ 𝐷𝑅𝑜𝑡𝑥

= (
cos𝐵𝑒𝑛𝑑𝑌 −sin𝑅𝑜𝑡𝑋 ⋅ sin𝐵𝑒𝑛𝑑𝑌 cos 𝑅𝑜𝑡𝑋 ⋅ sin𝐵𝑒𝑛𝑑𝑌

0 cos 𝑅𝑜𝑡𝑋 sin𝑅𝑜𝑡𝑋
− sin𝐵𝑒𝑛𝑑𝑌 −cos𝐵𝑒𝑛𝑑𝑌 ⋅ sin𝑅𝑜𝑡𝑋 cos 𝐵𝑒𝑛𝑑𝑌 ⋅ cos 𝑅𝑜𝑡𝑋

)

(These details already take into consideration that BendY describes a rotation around the negative y-

axis).

Now, let's assume 𝑣 = (𝑣𝑥, 𝑣𝑦 , 𝑣𝑧) being the representation of a unit vector that will transition into

the representation 𝑥0 = (1,0,0) when the coordinates are rotated as 𝐷𝑅𝑜𝑡𝑋,𝐵𝑒𝑛𝑑𝑌. It hence follows

that 𝐷𝑅𝑜𝑡𝑋,𝐵𝑒𝑛𝑑𝑌 ⋅ 𝑣 = 𝑥0, and further that 𝑣 = 𝐷𝑅𝑜𝑡𝑋,𝐵𝑒𝑛𝑑𝑌
𝑇 ⋅ 𝑥0. From this it follows that:

𝑣𝑥 = 𝑐𝑜𝑠(𝐵𝑒𝑛𝑑𝑌), 𝑣𝑦 = −𝑠𝑖𝑛(𝑅𝑜𝑡𝑋) 𝑠𝑖𝑛(𝐵𝑒𝑛𝑑𝑌), 𝑣𝑧 = 𝑐𝑜𝑠(𝑅𝑜𝑡𝑋) 𝑠𝑖𝑛(𝐵𝑒𝑛𝑑𝑌).

Through combining these equations, we arrive at:

𝑡𝑎𝑛(𝑅𝑜𝑡𝑋) = −
𝑣𝑦

𝑣𝑧
.

If, now, we restrict RotX to the range of [-90°,90°] (which is always possible as it was mentioned

above), we arrive at:

𝑅𝑜𝑡𝑋 = −𝑎𝑟𝑐𝑡𝑎𝑛
𝑣𝑦

𝑣𝑧
.

On given RotX we are now able to determine sin(BendY) in two possible ways:

𝑠𝑖𝑛(𝐵𝑒𝑛𝑑𝑌) =
𝑣𝑦

−𝑠𝑖𝑛(𝑅𝑜𝑡𝑋)
, 𝑠𝑖𝑛(𝐵𝑒𝑛𝑑𝑌) =

𝑣𝑧

𝑐𝑜𝑠(𝑅𝑜𝑡𝑋)
.

Since cos(RotX) or sin(RotX) may be zero (but never both of them), we have to choose the numerically

more stable option, i.e. the one with the bigger denominator.

With 𝑣𝑥 = 𝑐𝑜𝑠(𝐵𝑒𝑛𝑑𝑌) the value of cos(BendY) is given, too, and thus BendY can be identified

uniquely by

𝐵𝑒𝑛𝑑𝑌 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑠𝑖𝑛(𝐵𝑒𝑛𝑑𝑌), 𝑐𝑜𝑠(𝐵𝑒𝑛𝑑𝑌))
 Putting this together we finally get

51Rotation matrices are always orthogonal, i.e. we haveD-1=DT.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page67 / 102

𝐵𝑒𝑛𝑑𝑌 = {

𝑎𝑟𝑐𝑡𝑎𝑛 2 (
𝑣𝑦

−𝑠𝑖𝑛(𝑅𝑜𝑡𝑋)
, 𝑣𝑥) , |𝑠𝑖𝑛(𝑅𝑜𝑡𝑋)| ≥ |𝑐𝑜𝑠(𝑅𝑜𝑡𝑋)|

𝑎𝑟𝑐𝑡𝑎𝑛 2 (
𝑣𝑧

𝑐𝑜𝑠(𝑅𝑜𝑡𝑋)
, 𝑣𝑥) , |𝑠𝑖𝑛(𝑅𝑜𝑡𝑋)| < |𝑐𝑜𝑠(𝑅𝑜𝑡𝑋)|

We will have a special case for 𝑣𝑦 = 𝑣𝑧 = 0. Obviously, this will be the case whenever 𝐵𝑒𝑛𝑑𝑌 = 0

or 𝐵𝑒𝑛𝑑𝑌 = 180° respectively. The above "arctan" term for the computation of RotX will then be

undefined, and as a matter fact RotX will not be clearly definable in such an instance as two successive

RotX will rotate around the same axis when BendY=0 or 𝐵𝑒𝑛𝑑𝑌 = 180° respectively; in such an

instance only the sum of these RotX will be clearly defined, but not each value separately. If we do

not care about this ambiguity, we will still get a valid result: RotX will then have a random value that

will be dominated by rounding errors52; if we continue computing consistently using this "random"

RotX, the result will still be correct altogether (the randomness of RotX will be compensated in the

next RotX). However, it is better to treat this special case in an explicit way as follows:

for 𝐵𝑒𝑛𝑑𝑌𝑖 = 0: 𝑅𝑜𝑡𝑋𝑖 + 𝑅𝑜𝑡𝑋𝑖+1 → 𝑅𝑜𝑡𝑋𝑖, 0 → 𝑅𝑜𝑡𝑋𝑖+1

That is to say, the sum RotXi and RotXi+1 will be fully absorbed in RotXi; RotXi+1 will be set to 053.

On the other hand, we will have a certain problem if BendY is (by approximation) ±180°, thus in the

case of 𝑣 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) = (−1,0,0). Here, too, RotX is arithmetically undefined, as well as the sign

of BendY. In practice, however, the bending radius is different from 0 so much that BendY and RotX

are clearly defined; however, the bending radius information is not included in the simplified

representation of straight subsegments. Here, RotX and BendY must be defined via additional

information, or maybe via a modified v that would supply non-vanishing y or z components by taking

into consideration the actual bending direction54.

52 The numerical special case of the NaN result must also be assigned a real value (e.g. 0).
53 Such an approach will guarantee that RotX will only be different from 0 within the bending shape if there is a real

rotation of the bending shape. For planar bending shapes, RotX will only be required to specify the orientation angle of

the whole rebar, and in such an instance you always want this angle to be provided in RotX0 (but not in RotX1).

Finally, it should be noted that the case of BendY=0 will hardly ever occur inside the bending shape (that would be a

succession of two segments without a bend in between – which would really be a degenerate case, so to say). However,

the first BendY angle is very often 0, viz. for bars where the first segment lies in the XY plane.

For the sake of completeness, it should be noted that the case of vy≠0, vz=0 is not a problem numerically speaking. The

"arctan" feature for the determination of RotX will then yield ±90°, where the sign comes about randomly from

rounding errors again (that is to say, vz may be slightly positive or slightly negative, depending on the rounding error).

This randomness will then be compensated again in the next computations and will not be a problem as no "artificial"

value different from 0 has been introduced.
54 This consideration does not hold for the first segment as the real bending radius will be 0 in this case (for the first

segment, BendY merely specifies an orientation, but not a bend). However, this is not a problem as it will be possible to

avoid the case of BendY=±180° for the first segment anyway if the restriction from Section 3.10.5 is duly taken into

consideration, which requires RotZ to be selected such that 𝑣 𝑟 ⋅ 𝑣 0 ≥ 0; here, 𝑣 0 is the first segment and 𝑣 𝑟: =
(𝑐𝑜𝑠(𝑅𝑜𝑡𝑍), 𝑠𝑖𝑛(𝑅𝑜𝑡𝑍),0). This condition is equivalent to cos(𝐵𝑒𝑛𝑑𝑌0) ≥ 0 and thus to 𝐵𝑒𝑛𝑑𝑌0 ∈ [−90°, 90°].

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page68 / 102

3.10.16.13 Conversion from or to UNICAM

In UNICAM, there is a restriction in that the first segment must lie in the XY plane. Hence, in

UNICAM possibly an additional horizontal dummy segment must be introduced the length of which

is 0. This dummy segment will not be required in PXML55. Another difference between UNICAM

and PXML is found in the bending plane: whereas, in UNICAM, all bends must lie within the plane,

the bending plane may be rotated in PXML prior to each bend (RotX); of course, this degree of

freedom will be lost upon conversion PXML → UNICAM.

Hereinafter, the following terms will be used for the UNICAM values:

toX = angle to the x-axis

L = orientation angle of the bending plane (0 is for the vertical bending plane)56

di length of the segment i (i=0, 1, 2, ...)

i = angle at the end of the segment i (i=0, 1, 2, ...)

UNICAM → PXML excluding Dummy Segment (d00):

𝑅𝑜𝑡𝑍 = 𝛼𝑡𝑜𝑋

𝑅𝑜𝑡𝑋0 = −𝛼𝐿 , 𝐵𝑒𝑛𝑑𝑌0 = 0, 𝐿0 = 𝑑0

𝑅𝑜𝑡𝑋𝑖 = 0, 𝐵𝑒𝑛𝑑𝑌𝑖 = 𝛼𝑖−1, 𝐿𝑖 = 𝑑𝑖, 𝑖 ≥ 1

UNICAM → PXML including Dummy Segment (d0=0):

𝑅𝑜𝑡𝑍 = 𝛼𝑡𝑜𝑋

𝑅𝑜𝑡𝑋0 = −𝛼𝐿 , 𝐵𝑒𝑛𝑑𝑌0 = 𝛼0, 𝐿0 = 𝑑1

𝑅𝑜𝑡𝑋𝑖 = 0, 𝐵𝑒𝑛𝑑𝑌𝑖 = 𝛼𝑖, 𝐿𝑖 = 𝑑𝑖+1, 𝑖 ≥ 1

PXML → UNICAM, general considerations:

Using thedummy segment, conversion from PXML to UNICAM will be fairly straightforward. The

special cases excluding a dummy segment, on the other hand, will have to be treated separately as,

here, the information on BendY0 cannot be directly transmitted (the dummy segment that could carry

this information does not exist in these instances). The information on BendY0 must hence be

somehow included in the other variables (and the case excluding the dummy segment is specifically

characterized in that this is possible).

Besides, one will always have to make a differentiation between an ordinary rebar and a bent rebar

respectively: ordinary rebars have no bending plane, bent rebars do have a bending plane that will

be defined by the first real bend (BendY1). Naturally, for conversion to UNICAM, we have to assume

that all real bends will lie in the same plane.

PXML → UNICAM for only one segment:

Special case of RotX0= ±90° or BendY0= 0° (nodummy segment required):

𝛼𝐿 = 0

𝛼𝑡𝑜𝑋 = 𝑅𝑜𝑡𝑍 − 𝐵𝑒𝑛𝑑𝑌0 𝑠𝑔𝑛(𝑠𝑖𝑛 𝑅 𝑜𝑡𝑋0)

𝑑0 = 𝐿0, 𝛼0 = 0

Special case of BendY0= ±180° (nodummy segment required, but inversion of orientation):

𝛼𝐿 = 0

𝛼𝑡𝑜𝑋 = 𝑅𝑜𝑡𝑍 + 180°

55 In PXML, it is basically allowed to have segments with a length of 0, but it is not necessary (and hence not

reasonable) to use a horizontal DummySegment.
56 Here, L will be assumed to be in the range of]-180°,180°]. Depending on the format, in the UNICAM file, L will

be either directly saved, or a respective angle in the range of [0, 360°[.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page69 / 102

𝑑0 = 𝐿0, 𝛼0 = 0

All other cases (including a dummy segment):

𝛼𝐿 = −𝑅𝑜𝑡𝑋0

𝛼𝑡𝑜𝑋 = 𝑅𝑜𝑡𝑍

𝑑0 = 0, 𝑑1 = 𝐿0, 𝛼0 = 𝐵𝑒𝑛𝑑𝑌0, 𝛼1 = 0

PXML → UNICAM for several segments:

As the bending plane is defined by the first bend, it is reasonable to assume BendY1≠0. If the first

bend is degenerate (a bending angle of 0), any adjacent segments will be condensed in merely one

segment (in terms of data or theoretically).

𝛼𝐿 = −𝑎𝑟𝑐𝑠𝑖𝑛(𝑠𝑖𝑛 𝑅 𝑜𝑡𝑋0 𝑐𝑜𝑠 𝑅 𝑜𝑡𝑋1 + 𝑐𝑜𝑠 𝐵 𝑒𝑛𝑑𝑌0 𝑐𝑜𝑠 𝑅 𝑜𝑡𝑋0 𝑠𝑖𝑛 𝑅 𝑜𝑡𝑋1)

)sinsincoscos(cossin

sinsincos

)sinsinsincos(cossin

coscoscosa

),,arg(

10010

10

0001

10

RotXRotXBendYRotXRotXRotZ

RotXBendYRotZb

RotZBendYRotXRotZBendYRotX

RotZRotXRotX

wherebatoX

−+

=

+−

=

=

For RotX0=±90° or BendY0=0 or BendY0= ±180° (no Dummy Segment):

𝑑𝑖 = 𝐿𝑖, 𝛼𝑖 = 𝐵𝑒𝑛𝑑𝑌𝑖+1, 𝑖 ≥ 0 (the last angle being 0).

For RotX0 ≠ ±90° and BendY0 ≠ 0 and BendY0≠±180° (including Dummy Segment):

𝑑0 = 0

𝛼0 = 𝑎𝑟𝑔(𝑢, 𝑣), 𝑤ℎ𝑒𝑟𝑒
 𝑢 = 𝑐𝑜𝑠 𝐵 𝑒𝑛𝑑𝑌0 𝑐𝑜𝑠 𝑅 𝑜𝑡𝑋0 𝑐𝑜𝑠 𝑅 𝑜𝑡𝑋1 − 𝑠𝑖𝑛 𝑅 𝑜𝑡𝑋0 𝑠𝑖𝑛 𝑅 𝑜𝑡𝑋1
 𝑣 = 𝑐𝑜𝑠 𝑅 𝑜𝑡𝑋0 𝑠𝑖𝑛 𝐵 𝑒𝑛𝑑𝑌0

𝑑𝑖 = 𝐿𝑖−1, 𝛼𝑖 = 𝐵𝑒𝑛𝑑𝑌𝑖, 𝑖 ≥ 1 (the last angle being 0).

However, the case excludingdummy segment will still require some preprocessing. Prior to export,

the bending shape must be transformed such that the following conditions will be satisfied:

𝑅𝑜𝑡𝑋0 ∈ [−90°, 90°]
𝐵𝑒𝑛𝑑𝑌0 = 0
𝑅𝑜𝑡𝑋1 = 0

This dummy rectificationcan be performed as follows:

dummyrectification for RotX0 = ±90°:

𝑅𝑜𝑡𝑍𝑛𝑒𝑤 = 𝑅𝑜𝑡𝑍𝑜𝑙𝑑 − 𝐵𝑒𝑛𝑑𝑌0,𝑜𝑙𝑑 𝑠𝑔𝑛(𝑠𝑖𝑛 𝑅 𝑜𝑡𝑋0,𝑜𝑙𝑑)
𝐵𝑒𝑛𝑑𝑌0,𝑛𝑒𝑤 = 0
𝑅𝑜𝑡𝑋0,𝑛𝑒𝑤 = 𝑅𝑜𝑡𝑋0,𝑜𝑙𝑑 + 𝑅𝑜𝑡𝑋1,𝑜𝑙𝑑
𝑅𝑜𝑡𝑋1,𝑛𝑒𝑤 = 0

𝑅𝑜𝑡𝑋0,𝑛𝑒𝑤 → [−90°, 90°]

Dummy rectification for BendY0=0:

𝑅𝑜𝑡𝑋0,𝑛𝑒𝑤 = 𝑅𝑜𝑡𝑋0,𝑜𝑙𝑑 + 𝑅𝑜𝑡𝑋1,𝑜𝑙𝑑
𝑅𝑜𝑡𝑋1,𝑛𝑒𝑤 = 0
𝑅𝑜𝑡𝑋0,𝑛𝑒𝑤 → [−90°, 90°]

Dummy rectification for BendY0=±180°:

𝑅𝑜𝑡𝑍𝑛𝑒𝑤 = 𝑅𝑜𝑡𝑍𝑜𝑙𝑑 + 180°
𝐵𝑒𝑛𝑑𝑌0,𝑛𝑒𝑤 = 0
𝑅𝑜𝑡𝑋0,𝑛𝑒𝑤 = 180° − 𝑅𝑜𝑡𝑋0,𝑜𝑙𝑑 + 𝑅𝑜𝑡𝑋1,𝑜𝑙𝑑
𝑅𝑜𝑡𝑋1,𝑛𝑒𝑤 = 0

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page70 / 102

𝑅𝑜𝑡𝑋0,𝑛𝑒𝑤 → [−90°, 90°]

Where

𝑅𝑜𝑡𝑋0,𝑛𝑒𝑤 → [−90°, 90°]

is a transformation that will arrange for RotX0 to be within this restricted angular range. So, RotX0

will have to be changed by ±180°, if necessary; this will be compensated by inverting all BendYvalues

(BendY0 is not affected as this value has previously been set to 0 already).

3.10.16.14 Conversion from or to BVBS-BF2D

In the BVBS format, there is an option of specifying a bending radius for each bend. Deviating from

the BVBS specification, some machines will interpret all bends with a specified bending radius as a

spiral (and a specified length, if any, will then be read as arc length). For export to BVBS, it is thus

recommended not to write the bending radii into the geometry block, but rather to specify the same

by indicating the bending roll in the header block instead: The bending roll diameter will be set to

twice as much as the largest bending radius indicated. The radius details for spirals must of course

be specified as a radius in the geometry block; the value of the spiral diameter is taken from the L

parameter of PXML segment (see Section 3.10.16.10).

3.10.16.15 Conversion from or to BVBS-BF3D

The BVBS specifications for BF3D are (as opposed to BF2D) anything but complete, consistent or

conclusive57. It is thus not surprising that many mutually incompatible implementations are being

circulated.

Something that is inconsistent, for example, is the concept of whether to consider outer dimensions

or center line dimensions in BF3D. In principle, outer dimensions are common practice in BVBS.

However, there is a prevailing opinion by the majority that center line dimensions should be used for

BF3D. As a matter of fact, the use of outer dimensions in BF3D is rather out of the ordinary as the

BF3D vectors are not within or on the iron path anymore as we can see from the following example:

(The BF3D format is shown on top, the real iron geometry is shown below, when assuming that outer

dimensions are specified in BF3D.)

Something that is also inconsistent is the representation of bending angles beyond 90°. Here, there

are at least three variants that are being used:

a) To conceive the BF3D vectors as pure length vectors or direction vectors (however, this is not

consistent anymore for bending angles of 180°).

57 Here, we refer to the generally accepted BVBS specification of 2000 – we are not aware of any more recent versions.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page71 / 102

b) To divide the angle in partial angles whereby each partial angle is less than or equal to 90°.

c) Polygonal representation (by analogy with the polygonal representation in PXML). From a

certain size of an angle (135°, for example), the bending angle is divided in parts (as bending

angles close to 180° are not feasible anymore in this representation).

Another issue yet to be clarified is how to represent the absolute position of the rebar. Are the "bar

block" entries to be used for that? ("X", "Y" or "E"?). Some implementations introduce separate

private fields x/y/z in the "Private" block.

Due to this divergence of opinions, it is hence not possible to provide a consistent definition for BF3D.

However, when we try to combine the most common BF3D concepts in one shared perspective, we

arrive at the following definition which is at least compatible with many major existing

implementations:

1) BF3D considers center line dimensions (viz. not outer dimensions).

2) The geometry of the BF3D vectors coincides with that of the polygonal representation in

PXML. Bending angles beyond 90° can be divided as previously described for the polygonal

representation in PXML. Bending angles close to 180° must be divided. Vice versa (as for

the polygonal PXML representation), short segments in between two bends must be seen as

nothing but pure auxiliary segments; at the machine the two bends must be combined into

one single bend once again.

3) If absolute coordinates of the rebar are to be specified, this will be done in the "Private" block

using the fields "x", "y" and "z".

3.10.16.16 Conversion from or to 3D-BF2D

Due to the significant weaknesses of BF3D, it would be better doing completely without BF3D and

use a slightly extended BF2D instead. In fact, it is sufficient to provide the possibility of specifying a

RotX, of course only in those cases in which this is required. The extension proposed here provides

the option of specifying a RotX value separated by"~" from the bending angle parameter in BF2D.

Example:

w30~90@

In this example we have RotX=90° and BendY=30°.

For compatibility with the standard BF2D, however, it is absolutely necessary to omit the RotX

addition if RotX (almost) equals 0.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page72 / 102

3.10.17 Canonical Bar representation

As already mentioned, a given Bar geometry doesn’t have a unique RotZ/RotXi/BendYi representation:

different combinations of RotZ/RotXi/BendYi may result in the same geometry.

We have mentioned some additional recommendations which lead to a quite unique representation,

and we are going to formalize these rules here. However, it must be pointed out that it is not strictly

required to follow these rules. They are only meant to define a geometry’s representation which is

unique and is easy to be processed by legacy systems that deal with 2D information only.

The rules are58:

1) 𝑅𝑜𝑡𝑋1 = 0. 59

2) 𝑅𝑜𝑡𝑋𝑖 ∈ [−90°, 90°] for 𝑖 > 0.

3) 𝐵𝑒𝑛𝑑𝑌0 ∈ [−90°, 90°].

4) Observe one (and only one) of the two following restrictions:

a. 𝑅𝑜𝑡𝑋0 ∈ [−90°, 90°] (→ Legacy Canonical form)

b. 𝐵𝑒𝑛𝑑𝑌1 > 0 (→ Separation Canonical form) 60

If a Bar representation fulfills these conditions with variant 4a, we call it a Legacy Canonical form.

If the conditions with variant 4b are fulfilled, we call it a Separation Canonical form.

The Legacy Canonical form is the friendliest form for legacy systems since it minimizes the use of

all RotXi, including RotX0. With this convention, most bars can be represented without using RotXi

values at all.

However, the condition 4a is somewhat problematic from a fundamental point of view since it is not

invariant against modifications of the bar placement: modifying the rotation placement of a bar may

break condition 4a and for getting it fulfilled again it would be necessary to change the internal

representation of the bending shape (by inverting all BendYi). This means, that condition 4a breaks

the separation of placement and internal shape.

This problem can be solved by applying condition 4b instead of 4a: this leads to a uniquely defined

“inner” shape representation of the bar which is completely independent from the bar’s placement61.

Restrict BendY0 or RotX0:

In the above specification, BendY0 is constrained to [-90°,90°]. Without this condition one could

restrict RotX0 to [-90°,90°] without losing the mentioned rotation invariance. But then, for example,

quite normal cranked bars aligned in x-direction would have a representation with

RotZ=BendY0=180°, which would generally be considered disturbing. The Separation Canonical

form has therefore been defined to accept RotX0=180° rather than BendY0=180°.

However, if, in special legacy applications, the restriction of RotX0 becomes more important than that

of BendY0, one can take advantage of the following fact:

𝐷𝐵𝑒𝑛𝑑𝑌(𝐵𝑒𝑛𝑑𝑌0) ∙ 𝐷𝑅𝑜𝑡𝑋(𝑅𝑜𝑡𝑋0) ∙ 𝐷𝑅𝑜𝑡𝑍(𝑅𝑜𝑡𝑍)
= 𝐷𝐵𝑒𝑛𝑑𝑌(𝐵𝑒𝑛𝑑𝑌0 + 180°) ∙ 𝐷𝑅𝑜𝑡𝑋(180° − 𝑅𝑜𝑡𝑋0) ∙ 𝐷𝑅𝑜𝑡𝑍(𝑅𝑜𝑡𝑍 + 180°)

I.e., you can change RotX0 to RotX0–180° if you increase BendY0 and RotZ by 180° at the same time.

This way you can change a Separation Canonical form into a form with restricted RotX0.

58 We assume here that all 𝐵𝑒𝑛𝑑𝑌𝑖 ≠ 0 for all 𝑖 > 0. Without this condition, you could insert additional segments at any

point, to which no real geometry corresponds. If there are such segments, you can always take them away by joining

them with the previous segment.
59 I.e., the first bending plane dominates the representation. Since most bars have only one bending plane, bending plane

rotation is avoided completely for these cases.
60 If there is only 1 segment, condition 4b is always to be considered as fulfilled.
61 Having BendY1>0 is not important by itself. The reason for introducing this condition is only for getting unique RotZ,

RotX0, BendY0. Without restricting BendY1 to positive values, it is always possible to add 180°a given RotX0 and

compensate this by inverting all BendYi.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page73 / 102

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page74 / 102

3.11 Girder

3.11.1 PieceCount, X, Y, Z, GirderName, Length, AngleToX

AngleToX specifies the direction in the xy-plane (starting from the x-axis).

The values are within the range of]-180°, 180°].

X and Y refer to the X/Y position of the top flange (core dimension of the top chord).

Z refers to the Z position of the bottom flanges (core dimension of the bottom chord).

3.11.2 NoAutoProd

This must be set if the lattice girder is not to be produced automatically.

3.11.3 Height, TopExcess, BottomExcess

Height is the Z difference between the lowest point and the highest point.

TopExcess is the Z distance of the highest point to the upper edge of the upper chord.

BottomExcess is the Z distance of the lowest point to the bottom edge of the bottom chord.

3.11.4 Weight, TopFlangeDiameter, BottomFlangeDiameter

TopFlangeDiameter and BottomFlangeDiameter are given in mm; Weight is given in Kg.

3.11.5 GirderType

GirderType is a numerical Type identifier. It is recommended to use the following values:

0 = standard girder (without any additional definition).

1 = general basic reinforcement girder.

2 = shear force girder.

3 = supplementary girder.

6 = Versagirder

7 = left-sided Versagirder

8 = right-sided Versagirder

This corresponds to the unit digit of the UNICAM type of girders.

Orientation of the shear force girders: the orientation of the shear force girders is defined such

that the inclined flanks are sloping:

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page75 / 102

3.11.6 MountingType

Mounting instruction:

0 = no indication.

1 = to be fixed manually (rework required).

2 = to be placed manually.

This corresponds to the tens digit of the UNICAM type of girders.

3.11.7 ArticleNo

Article designation of the lattice girder.

3.11.8 Machine

Text field to specify the production machine.

A machine-internal production list may optionally be treated as a separate machine of its own. In

such an instance, it is recommended to select the following format:

GTA:2

In this example, "GTA" specifies the machine as such, and "2" is the number of the production list.

3.11.9 Period, PeriodOffset

In the Period field, the lattice girder period can be specified (in mm). Here, a value of 200 would be

typical. If the value is not specified, or if it is 0, an application-dependent default must be assumed.

The PeriodOffset field specifies at what distance from the beginning of the lattice girder there will be

the first period low point. For an uncut lattice girder, this value will normally be 0; for a grid-

compliant cut lattice girder, this value will be either 0 or one half of the period length; for a randomly

cut lattice girder, all values are possible, either positive or negative ones.

Export to UNICAM: For export to UNICAM, the fields Period and PeriodOffset are written into the

two spare fields at the beginning of line #5 of the BRGIRDER block.

3.11.10 Width

In the Width field, the width of the lattice girder can be entered (in mm); this is measured on the

extreme outside on the lattice girder. Here, a typical value would be 80. If this value is not specified,

or if it is 0, an application-dependent default must be assumed.

3.11.11 AnchorBar

Anchor rods.

Type: type identifier.

Length: length in mm.

Position: laying position in mm.

3.11.12 GirderExt

Generic sub-table of the lattice girder.

The specific meaning of the fields will be dependent on the type.

For all types, there is the Position field: this describes a position in mm, measured from the beginning

of the lattice girder.

The Flags field holds 32 bits that may be used type-specific and/or application-specific. The meaning

of the fields Val0, …, Val3 is also type-specific and/or application-specific.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page76 / 102

3.11.12.1 Type = splicePos

Splice point at which the lattice girder was split and subdivided at the lattice girder position.

• Val0: phase jump mm at the welding point. This is equivalent to the length of lattice girder

that was 'omitted' at the splice position. This value may also be negative.

• Val1: length of overlap at the splice point. There will be a double lattice girder along this line

segment. This value may also be negative.

3.11.12.2 Type = FixingPos

The point at which the reinforcement is fixed in place (welded or tacked).

The values Val0, …, Val03 will depend on the application. For applications with fixed welding tables,

the welding program will be provided Val0. In other applications, the welding current, the welding

time or similar may be provided.

3.11.12.3 Type = GirderGripPos

The position at which the lattice girder will be gripped for installation (gripping position for handling

a single lattice girder).

3.11.12.4 Type = MeshGripPos

The position at which the lattice girder will be gripped when the element will be handled.

3.11.12.5 Type = SupportPos

The position at which a supporting spool piece must be installed.

3.11.12.6 Export to UNICAM

For export to UNICAM, the GirderExtRows will be entered as lattice girder welding points. The

welding output will contain the type information:

• Welding output = 0xx: Unknown.

• Welding output = 1xx: SplicePos.

• Welding output = 2xx: FixingPos.

• Welding output = 3xx: GirderGripPos.

• Welding output = 4xx: MeshGripPos.

• Welding output = 5xx: SupportPos.

The value of 'xx' will be filled with k = Round(Val0 / 5.0). To make sure that k will be within the

range of 0 to 100, the following transformation is done additionally: k is restricted to [-50, 49], and

100 is added for negative values (that is to say, xx = 93 will be set for k = -7).

3.11.13 Section

The period pattern of the lattice girder can be specified by using the Section table. If no Section

entries are given, the higher-ranking specifications in the Girder entry or default values respectively

will applied.

A Section entry describes a period section that always begins with a period low point, and ends with

a period low point.

3.11.13.1 Fields in the Section table

• L: Length of a period section in mm. Typical values are around 200 mm.

The value should always be positive: 𝐿 > 0.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page77 / 102

• S: Shift of the top diagonal wire point in relation to the center of the period section. For a

normal lattice girder, this value will be 0. For shear force girders, this value will typically be

around -100. However, the value should be confined to be within the related section,

i.e. |𝑆| ≤
𝐿

2
.

The value of S, however, describes the said displacement in an "idealized" form: if V is the

actual displacement (in mm), S is defined as follows:

𝑆 ∶= 𝑉 ∙
𝐿

𝐿 − 2 ∙ (𝑟𝐵 + 𝑟𝑇)
, hence 𝑉 = 𝑆 ∙

𝐿 − 2 ∙ (𝑟𝐵 + 𝑟𝑇)

𝐿

Here rT and rB are the upper and lower diagonal wire bending radii. I.e. if the bending radii

are taken into account, the actual displacement is less than the value indicated in S.62

• F: Length of the flat part (generally only for shear force girders with a low height and

double welded bottom chord). The flat part is always located on the one side of the section,

where the diagonal wire is less steep. In other words, if S is negative, the flat part is on the

positive end of the section (and vice versa). Moreover, the restriction should always be 0 ≤
𝐹 ≤ 2 ∙ |𝑉| observed63.

3.11.13.2 Assignment of the Section data

Section entries are assigned to the effective lattice girder sections according to the following rules:

a) The Section entries describe a recurring pattern. If, for example, the three L-data are specified

to be 195, 195, 200, this means that the length of the first two periods is 195 mm each and

that the length of the third period is 200 mm. The fourth and fifths periods will then have a

length of 195 mm again, and so forth.

b) The Section data merely describe a pattern, they do not provide any information regarding the

actual length of the lattice girder. This is rather defined in the Length field of the Girder entry.

c) The period pattern normally starts at the beginning of the lattice girder. If, however, a

PeriodOffset value other than 0 is specified, the beginning of the pattern will be shifted

accordingly64.

Calculations for girder shapes

The following calculation analyzes the shape of the diagonal wire in its upright position:

62 This "idealized" definition for S has the following motivation: the actual displacement V depends on the bending

radii. However, these may not be known, so it is advantageous to define the value S so that it is typically independent of

the bending radii. In concrete terms, a value of S=L/2 always leads to a completely vertical diagonal wire section,

independent of the bending radii.
63 The flat part is meant to avoid that shear force girders with a small height value have too weakly rising diagonal

wires. That’s why the flat part is located on the side where the weakly rising diagonal wire is.

The restriction 𝐹 ≤ 2 ∙ |𝑉| helps to avoid two unnatural conditions: first it avoids that F would invert the shear direction

and second it excludes the undefined case where F is positive and S is 0 (in this case the position of the flat part would

be undefined). The limit case of 𝐹 = 2 ∙ |𝑉| refers to a diagonal wire with symmetrical shape.
64 Please note: If the value of PeriodOffset is a positive value, the beginning of the period pattern will be shifted into

the lattice girder. The first section of the lattice girder will thus be positioned upstream of the beginning of the period

pattern. However, this section will still have a defined structure as the pattern recurs periodically, and is thus also

defined upstream of its starting point. (Upstream of the beginning of the pattern, the end of the same pattern will string

together just because the pattern recurs in an infinite sequence).

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page78 / 102

The PXML data provides the following values65:

FB, FT, FE, L, V, rB, rT, D

These values define the whole geometry as follows:

𝑘𝑟 =
𝐿

2
+ 𝑉 −

𝐹𝑇

2
− 𝐹𝐵, 𝑘𝑓 =

𝐿

2
− 𝑉 −

𝐹𝑇

2
− 𝐹𝐸

𝑑1 = 𝑟𝐵 ∙ tan
𝛼𝑟

2
, 𝑑2 = 𝑟𝑇 ∙ tan

𝛼𝑟

2
, 𝑑3 = 𝑟𝑇 ∙ tan

𝛼𝑓

2
, 𝑑4 = 𝑟𝐵 ∙ tan

𝛼𝑓

2

𝑐𝑟 =
𝐷

tan𝛼𝑟
=

𝐷 ∙ (1 − tan2 𝛼𝑟

2
)

2 tan
𝛼𝑟

2

, 𝑐𝑓 =
𝐷

tan 𝛼𝑓
=

𝐷 ∙ (1 − tan2 𝛼𝑓

2
)

2 tan
𝛼𝑓

2

With 𝑡𝑟: = tan
𝛼𝑟

2
 and 𝑡𝑓: = tan

𝛼𝑓

2
 we get:

𝑑1 = 𝑟𝐵 ∙ 𝑡𝑟 , 𝑑2 = 𝑟𝑇 ∙ t𝑟 , 𝑑3 = 𝑟𝑇 ∙ t𝑓 , 𝑑4 = 𝑟𝐵 ∙ t𝑓

𝑐𝑟 =
𝐷 ∙ (1 − t𝑟

2)

2 ∙ t𝑟
, 𝑐𝑓 =

𝐷 ∙ (1 − t𝑓
2)

2 ∙ t𝑓

Because of

𝑘𝑟 = 𝑑1 + 𝑑2 + 𝑐𝑟 , 𝑘𝑓 = 𝑑3 + 𝑑4 + 𝑐𝑓

We get

𝑘 = 𝑔 ∙ 𝑡 +
𝐷 ∙ (1 − t2)

2 ∙ t
, 𝑔 ≔ 𝑟𝐵 + 𝑟𝑇

(𝑘 ≔ 𝑘𝑟 and 𝑡 ≔ 𝑡𝑟 or 𝑘 ≔ 𝑘𝑓 and 𝑡 ≔ 𝑡𝑓)

Now this can be solved for t:

𝑡 =
√𝐷2 − 2𝐷𝑔 + 𝑘2 − 𝑘

𝐷 − 2𝑔

65 With the current PXML definition the value of FT is always 0 and only one of the values FB or FE is can be different

from 0. However, the following analysis considers the more general case of arbitrary nonnegative values of FT, FB, FE.

rB and rT are not directly given in PXML. Typically, they are assumed to be
5𝑊

2
, where W is the diameter of the diagonal

wire.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page79 / 102

3.12 Alloc

An Allocblock will describe a staggering pattern for rebars or lattice girders respectively.

This is specifically used to describe cages: here, the Allocblock will describe the laying pattern of

the stirrups.

Type-Attribute

The following types are available:

• Bar: The Alloc block relates to rebars (stirrups, staggered rebars).

• Girder: The Alloc block relates to lattice girders.

3.12.1 GuidingBar

If there is a valid rebar index in the GuidingBar field, staggering will occur along this rebar. The

Region values will then define the guiding positions on this guiding rebar, i.e. the "guided" rebars

will be arranged at these guiding positions along the guiding rebar.

Definitions:

- Guiding bar: the rebar that specifies the path for staggering.

- Guiding positions: those points or positions on the guiding rebar at which the guided

rebars will be arranged.

- Guided bar: the rebar that is to be "guided" by the guiding rebar.

- Allocated bars: those rebars that are positioned at the real points or positions that are

derived from the staggering scheme.

The following rules will apply:

a) The path defined by the guiding bar will run along the rebar core and will have the bending

radius of 0 if there are bends.

b) To determine the coordinates of the allocated bars, add the relative staggering position

coordinates to the rebar coordinates. Here, the relative staggering positions are the

staggering positions on the guiding bar, related to the beginning of the guiding bar.

The original (unstaggered) guided bar must hence be positioned at the starting point of the

guiding bar.

c) If the guiding bar has bends, the staggered rebars will be additionally rotated. Such rotation

will occur after shifting and around the guiding position. For each guiding bar bend, and up

to the respective guiding position, rotation will then occur around the axis of the bend66.

3.12.2 Determination of direction excluding GuidingBar

If there is no GuidingBar, the direction will be determined by the staggered object itself:

The rebar will determine the starting point via the respective X/Y/Z coordinates of the Bar items.

The direction will be determined as follows:

1) Rotate the coordinate system around RotZ (viz. around the positive z-axis).

66 Here, the first BendY of the guiding bar should not be read as a bend; that is to say, this only refers to the bend within

the rebar.

At this juncture, it may come as a surprise that RotZ and BendY0 of the guiding bar are not included in the

allocatedrebars. On the one hand, there are practical reasons for that as it would be rather non-descriptive if RotZ of the

guided bar would not be absolute, but relative in relation to the guiding bar. On the other hand there are actually rather

fundamental reasons that prevent us from including RotZ and BendY0 of the guiding bar in the allocatedrebars: RotZ

and BendY0 are not unambiguous for a given guiding bar as there are different combinations of these values that are

equivalent for the guiding bar, but that would bring about different geometrical relations for the allocatedrebarsif they

would be included.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page80 / 102

2) Rotate the coordinate system around RotX0 (viz. around the positive x-axis).

3) Rotate the coordinate system around BendY0 (viz. around the negative y-axis).

4) Rotate the coordinate system around RotX1 (viz. around the positive x-axis); do this only if

there is more than one segment.

5) The negative y-axis will then face positive pitch values. This is the axis via which the first

bend will be defined.

Please note: in UNICAM, the pitch value is defined differently for longitudinal rebars and transverse

rebars respectively67.

• For rebars in a +X direction (0°): UnicamPitch = –PxmlPitch,

• For rebars in a –X direction (180°): UnicamPitch = PxmlPitch,

• For rebars in a +Y direction (90°): UnicamPitch = PxmlPitch,

• For rebars in a –Y direction (-90°): UnicamPitch = –PxmlPitch, and

• For all other angles: single rebars must be specified in UNICAM.

The UNICAM definition appears to be somewhat more familiar, but cannot be consistently defined

for generic angles.

The same applies similarly to lattice girders: the starting point is specified via the lattice girder

coordinates: the direction of the pitch is defined as follows:

1) Rotate the coordinate system around AngleToX (viz. around the positive z-axis).

2) The negative y-axis will then face the direction of positive pitch values. This is the axis via

which the first bend will be defined.

Again, we see the same difference to the UNICAM definition as mentioned above.

3.12.3 Region

The staggering pattern is composed of a sequence of Regions: each Region includes the following

information:

• IntervalCount: number of intervals.

This value is integer and nonnegative.

• Pitch: Interval width in mm. This value may also be non-integer, or may also

be negative respectively.

• IncludeBegin: If this is set, the beginof the interval is included in the region.

• IncludeEnd: If this is set, the end of the interval is included in the region.

• RefIndex: Integer value that determines the referenced item (rebar or lattice girder

respectively). A value of 0 means that the first rebar (or the first lattice

girder respectively) of the respective Steel block is referenced.

If RefIndex is NULL, negative, or too large, it is deemed not allocated.

The Region will then define an interval offset without, however,

allocating a rebar.

Comments:

i) The length of the Region is derived from L = IntervalCount * Pitch.

ii) A Region will define positions.

The position k of the m-th Region will be computed as follows:

𝑃𝑚,𝑘 = ∑ 𝐿𝑖 + 𝑘 ⋅ 𝑃𝑖𝑡𝑐ℎ𝑚
𝑚−1
𝑖=0 , 𝐿𝑖 = 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝐶𝑜𝑢𝑛𝑡𝑖 ⋅ 𝑃𝑖𝑡𝑐ℎ𝑖.

At first, the position thus computed is merely a scalar (linear) value. Via the procedures

67 For example, refer to Unitech Interface Definition, 4.9.5, Item 10: "Positive pitch means positive coordinate direction,

…, use of the pitch is ONLY allowed for angles of 0°, 90°, 180° or 270°."

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page81 / 102

from Sections 3.12.1 and 3.12.2, a specific point in space can then be determined on this

basis.

iii) If the Region has no valid RefIndex, no stirrups have been allocated to it68.

iv) If the Region has a valid RefIndex, at least IntervalCount-1 stirrups will be allocated. If

IncludeBegin is set, another stirrup will be added. If IncludeEnd is set, another stirrup will

be added, too. Thus, a maximum of IntervalCount+1stirrups can be allocated to the Region.

v) Usually, IncludeBegin of a region and IncludeEnd of the preceding region will be

synchronized. That is to say, real freedom only exists at the beginning of the first Region

and at the end of the last Region respectively. However, such synchronization is not

absolutely required.

vi) Due to the above pattern, an Allocblock will yield a quantity for a stirrup referenced in the

same. Now, this quantity, which should be called AllocCount, is computed as follows:

𝐴𝑙𝑙𝑜𝑐𝐶𝑜𝑢𝑛𝑡 = ∑ 𝐷𝑖 ⋅ (𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝐶𝑜𝑢𝑛𝑡𝑖 − 1 + 𝐸𝑖 + 𝐵𝑖)

𝑅𝑒 𝑔𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡−1

𝑖=0

, 𝐴𝑙𝑙𝑜𝑐𝐶𝑜𝑢𝑛𝑡 >= 0

𝐵𝑖 = 1 if 𝐼𝑛𝑐𝑙𝑢𝑑𝑒𝐵𝑒𝑔𝑖𝑛 is set
𝐸𝑖 = 1 if 𝐼𝑛𝑐𝑙𝑢𝑑𝑒𝐸𝑛𝑑 is set

𝐷𝑖 = 1 if the respective stirrup occurs in Region𝑖 , otherwise 0.
Please note: TheAllocCountvalue is nonnegative by definition although it could be negative

for IntervalCount=0 in absolute terms of figures.

Please note: An Allocblock will define its own AllocCount value for each stirrup that is

referenced in the Allocblock.

vii) The total of the AllocCounts for one stirrup specifies how many stirrups have an allocated

guiding position. Usually, this number will be the same as the number of stirrups

(Bar.PieceCount). However, this compliance is not absolutely required, that is to say,

Bar.PieceCount may have excess or missing stirrups.

If there are any excess stirrups, these will be allocated to their original X/Y/Z position; that

is to say, these excess stirrups will be considered separately from the Allocblocks.

If there are any missing stirrups, the last stirrups of the last Allocblocks will be deemed to

be missing.

viii) A Region with Pitch=0 can be considered in terms of figures just like any other Region.

This special case is usually used to represent stirrups that are not welded, but that are

included in the supply unmounted (typically at the front or rear ends of a cage).

ix) The definition of the Alloc or Region data structures will allow for one rebar to be referenced

in several Regions that may even be in different Allocblocks. Usually, however, a rebar will

only be referenced in Region blocks that belong to one single Allocblock only. That is to

say, the rebar usually has no more than one staggering pattern (=Allocblock) only. To the

contrary, one staggering pattern often has several different rebars.

3.13 SteelExt

Additional entries to the Steel block. The type of these entries is application-dependent and will be

differentiated via the Type attribute. The meaning of the Info field will depend on the Type attribute.

In addition, there will usually be application-specific fields (I_P_-Tags).

68 For the sake of simplicity, only stirrups are mentioned here. However, this is similarly true for other staggered rebars

or for lattice girders respectively.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page82 / 102

3.14 Feedback

The Feedback Table is essentially different from the other PXML Tables: the Feedback Table is not

intended to describe any production data, but rather includes the machine feedback. As will be

explained in more detail below, there are two types of feedback:

• PTS message: will provide information regarding the producibility of certain Items in

advance.

• Machine-Return: will provide information regarding any production done.

For data transfer from the CAD to the machine, there will usually be no Feedback Table. For the

feedback from the machine (or the test system respectively) to the CAD, there will often only be the

Feedback Table, but no other data; in some cases, however, the machine may include production data

in a PXML feedback file as well.

3.14.1 Production Test Service (PTS)

The Production Test Service (abbreviated PTS) allows a CAD system or control system to issue a

query to the production system to scan forproducibility of a product. Data may be generated under

the direct involvement of the machine capabilities; thus, we can achieve a high level of process

reliability and optimality of the production sequence.

Demand for PTS systems has specifically arisen in connection with modern mesh bending facilities.

These facilities have an ever increasing scope of performance which, however, cannot be described

by way of a few threshold or limit values due to the increasing complexity of such facilities. The

fully automatic producibility of a complex reinforcement cage will depend on such a variety of details

that the same can only be reliably reviewed under the direct involvement of the machine software;

and this is exactly what is to be achieved by means of the PTS.

PTS is composed of two parts:

• PTS Server: this is a service application that must be provided by the machine manufacturer;

this service will run on the CAD workstations, or will be centralized somewhere within the

network respectively. The PTS server will receive and respond to queries; to this end, it must

take into consideration the computational logic and the parameters of the machine software.

• PTS Client: this must be provided by the CAD manufacturer in the CAD application (and /

or in the control system). By means of the PTS Client, queries are issued to the PTS Server

from within the CAD application. The server response must then be visualized in the CAD

system.

Allocation of a response to the request previously sent will occur via the GlobalID of the

DocInfoTable. This ID should thus be set individually for each request.

The Request of the PTS Client to the PTS Server will be sent in the format of a PXML document that

will contain production data, viz. Order blocks and the associated child structures.

The Feedback of the PTS Server will be sent in the format of a PXML document that will contain

Feedback blocks. If the PTS Server modifies any production data of its own account, it can feed back

Order blocks in addition to the Feedback blocks in an attempt to describe the data thus modified69.

However, such feedback of the Order blocks (= production data) should be seen as an optional

additional function; the central element of the feedback are the Feedback blocks as such.

69 Naturally, the production data fed back must make reference to the original data via GlobalID. If an Item of the

original data in the feedback is referenced several times (because an original rebar had to be split into several items, for

example), the same GlobalIDmust be specified in all relevant feedback items.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page83 / 102

3.14.2 Machine Return

Machine Return is a functionality that is closely related to the PTS feedback. However, as opposed

to PTS, this is not a test feedback, but rather a production feedback of the production machines to the

higher-ranking control system. Here, for the most part, produced quantities will be fed back.

If the production machine modifies any production data of its own account, it may be helpful to also

specify the modified production data in the feedback (viz. Order blocks plus child structure). This

(optional) functionality may even provide for data that are entered in the machine manually be

maintained back to the higher-ranking control system.

A further application area of production feedbacks is used by reporting events from MES systems to

the higher-ranking ERP system.

3.14.3 Fields of the Feedback Block

3.14.3.1 Feedback attributes

1) ItemType: ... specifies the object type to which the feedback relates. Typically a PXML

Table name is specified here.

2) GlobalID: ... specifies to which production data Item the feedback relates. To be able to

unambiguously allocate a Feedback entry, we need both, the ItemType and the GlobalID.

Merely both of these together will identify the production Item concerned.

Both attributes mentioned are to be specified precisely once for each Feedback block.

3.14.3.2 Feedback fields

1) MessageType: ... defines the type of the message. The following values are available:

a. info: Pure information only, no warning character. "info" is also the default

MessageType that will be assumed if there is no specification.

b. hint: Hint at a low warning level. For example, this will be used for items that can

be produced without any problem, but for which attention is to be drawn to the fact

of lack of optimization in relation to the production speed.

c. warning: Warning of medium level. This item can be produced, but with some

difficulty only; it may be of reduced quality, or it may impose major strain on the

machine while being produced.

d. error: Error. This item cannot be produced the way it is proposed (viz. this item

will not be produced at all, or with a strongly modified shape only).

e. program: Feedback which is intended for automatic evaluation by the PTS client. It

isn’t primarily meant to be displayed to the user. Typically, such messages do not

have a description text.

2) Code: Alphanumerical code that identifies the meaning of the Feedback message. The list

of codes including their assigned meaning will be provided by the machine manufacturer.

For PTS messages, it is recommended to specify unambiguous error codes via the Code

field. Within the limits of Machine Return messages, the Code may be used to identify

feedback events. Here, typical codes would include imported (imported in terms of data),

started (production has started), produced (produced as a single item; for concrete elements:

concreted), embedded (installed, welded; for concrete elements: warehoused), delivered

(delivered, transferred to the downstream system; for concrete elements: taken out of the

warehouse / lifted).

For MES→ERP feedback events and codes a fully standardized specification has been given

in the PXML Web API (see www.pxml.eu).

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page84 / 102

3) InfoValue: Additional information for Feedback message. A numerical or alphanumerical

value can be provided. The interpretation of this value depends on the Code field.

4) PieceCount: Quantity (integer value); ... specifies how many pieces of the specified item

are fed back. Typically, this will read "1".

This field is used for messages of the type of Machine Return, and will typically not be

present in PTS messages.

5) MaterialType: Type of the material used.

For Bar items, typically the wire diameter is entered here; if there are different wire types to

any one diameter, a more generic alphanumerical wire ID will be entered here.

For lattice girders, typically the girder type is entered here.

This field is used for messages of the type of Machine Return, and will usually not be

present in PTS messages.

6) MaterialBatch: Batch identification of the material used.

The following format is recommended for round-bar steel from coil:

"12345@AR177228C". Here, "12345" is an ID to unambiguously identify the coil;

"AR177228C" is the steel batch. As the coil batch can be derived from the ID, it is often

useful to merely specify the ID only (viz. only "12345"); of the ID is not known, it will be

adequate to merely specify the batch only, starting with a field separator '@'

(viz. "@AR177228C").

This field will be used for messages of the type Machine Return, and is usually not present

in PTS messages.

7) MaterialWeight: The weight of the material used in kg (total weight for all units

produced).

This field is used for messages of the type of Machine Return, and is usually not present in

PTS messages.

8) ProdDate: Production timestamp (production end point). This is typically specified in

Machine Return messages to record the precise time of production.

9) Machine: Identification of the machine or of the PTS server that generated the message.

This field is particularly important if several PTS server are connected in series. (If within a

physical machine there is the requirement to distinguish between different production lists, a

format like MMM:X is recommended. This is the same recommendation as has been made

for other PXML machine fields. In this sample MMM identifies the physical machine and X

identifies the production list within that machine).

10) Description: Optional text entries to describe the message in text format. Several

languages may be specified. Here, language codes must be specified by means of ISO 639

for the Culture attribute, optionally extended by the ISO 3166 country codes; viz., we will

have indications in the format "en" or "en-US" respectively.

The description text may also be long or multi-line. In addition to the error message as

such, there may be recommendations for correction, or information on corrections made

automatically.

For example: "Structural module Y=50mm not satisfied. Rebar shifted by -25 mm in Y."

A Feedback entry should have merely one Description entry for each language only.

In Machine Return messages in which merely the produced number of pieces is reported, the

MessageType will not be specified, or will be set to "info". However, a production message or a

warning may be included as a matter of principle such that a Machine Return message may also be

combined with other MessageTypes.

3.14.4 FbVal

For Feedback messages it is possible to include additional values with FbVal entries. Each FbVal

entry has two attributes: a type T and a value V.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page85 / 102

The following tables describe the FbVal types and values defined by the standard.

T Description Example

OrdNo Order number AA00048386

Customer Customer identification XyConstruction

ElemNo Element number 5522A

PartType Element part (typically used with DW/TW
elements)

01

Pos Denomination of the item position 17B

ShiftID ID of the production shift to which the feedback
is referring to.

MorningShift

ShiftStart Start time of the production shift to which the
production feedback is related. The shift’s start
is especially relevant for evaluations dealing with
shifts crossing midnight; for such shifts the
associated shift day may be different from the
day of the timestamp reported in the ProdDate
of the feedback entry.

2017-02-20T16:32:33+01:00

PalDataID Identification of the logical production unit 123456

PalNo Identification of the physical production unit 43

Size Nominal dimension as requested by CAD data.
Typically the nominal length in mm.
For meshes: typically X and Y dimensions are in a
form 5740x1320.
The nominal dimension together with the
nominal type should contain enough
information for the adding inventory posting.

600

ProdSize Nominal dimension as actually produced.
This value may differ from the Size value in cases
where the machine modifies dimensions in
order to bring them in the range accepted by
the machine.

800

NomTy Requested production type (from CAD).
In “Bar” entries a Bending form denomination
could be used
In “Girder” entries the field usually contains the
girder type.

M10

ProdTy Type which has actually been produced.
Could deviate from NomTy.
For “Girder” entries the field typically indicates
the parametrized girder type name in the
machine (this type name is usually linked to the
NomTy over Alias)
For “Bar” entries the field could indicate the
bending form denomination or the number of
bendings in a form “B5” for a bar with 5
bendings.

B5

ProdArticle ERP Item code of the produced product. AXL554

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page86 / 102

Total_Kg Real total weight in Kg of the actually produced
item.

9.123

Wr Wire properties (see Wire information
description below).
For “Bar” entries the field indicates wire
information of the bar itself.
For “Steel” entries the field indicates either wire
information about one single bar or several bars
of the same type that are composed together.

D=12 Qlty=BS300
Mtl=99@C25408
Len=810 Kg=7.756
Art=GD12345

Wr_Tp Wire properties for the top flange of the girder
(see Wire information description below).

D=12 Qlty=BS300
Mtl=99@C25408
Len=810 Kg=7.756

Wr_B1 Wire properties for the left bottom flange of the
girder (see Wire information description below).

D=12 Qlty=BS300
Mtl=99@C25408
Len=810 Kg=7.756

Wr_B2 Wire properties for the right bottom flange of
the girder (see Wire information description
below).

D=12 Qlty=BS300
Mtl=99@C25408
Len=810 Kg=7.756

Wr_D1 Wire properties for the left diagonal wire of the
girder (see Wire information description below).

D=12 Qlty=BS300
Mtl=99@C25408
Len=810 Kg=7.756

Wr_D2 Wire properties for the right diagonal wire of
the girder (see Wire information description
below).

D=12 Qlty=BS300
Mtl=99@C25408
Len=810 Kg=7.756

Wld Information about one generic welding point
(see Welding point information)

X=2663.4 I=9774

Wld_Tp Information about one top wire welding point
(see Welding point information)

P=7322 T=226 X=2563.4
I=9664

Wld_B1 Information about one left bottom wire welding
point (see Welding point information)

X=2663.4 I=9774

Wld_B2 Information about one right bottom wire
welding point (see Welding point information)

I=9333 T=230 X=2560.4

Wld_Target Target values of generic welding points (see
Welding point info)
If it does not contain the X/Y position then the
values refer to all welding points of that item.

T=300 I=9800

Wld_Tp_Target Target values of the top wire welding points (see
Welding point info)
If it does not contain the distance to the
beginning of the girder then the values refer to
all welding points of the girder.

T=350 I=10200

Wld_B1_Target Target values of the left bottom wire welding
points (see Welding point info)
If it does not contain the distance to the
beginning of the girder then the values refer to
all welding points of the girder.

T=300 I=9800

Wld_B2_Target Target values of the right bottom wire welding
points (see Welding point info)

T=300 I=9800

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page87 / 102

If it does not contain the distance to the
beginning of the girder then the values refer to
all welding points of the girder.

Spacer Information about one spacer (see Spacer
information).

H=20 D=95 X=3055.7
Y=282.1

Area In a “Slab” entry the field indicates the area of
the element in m².

15.22

CutBegin
CutEnd
WeldBegin
WeldEnd
BendBegin
BendEnd
PlaceBegin
PlaceEnd

Start and/or end time of various production
events can be specified.
The following events are defined:
Cut: Cutting on specified dimensions
Weld: Welding.
Bend: Bending
Place: Placing of items on their target location.
Typically, there is only one entry per Feedback
block for each of these events. This means that
for a Steel block, the information refers to the
entire Steel block.

2017-02-20T16:32:33+01:00

m2 Produced area in square meters. The value is
determined by the machine according to its own
criteria. Typically, the wrapping xy-box of the
produced part is used.

17.32

RefItem_XX Referenced item. Here XX is only a placeholder
and must be effectively replaced by a table
name. Specifically, there are types like
RefItem_Bar, RefItem_Segment, etc.
The value to be indicated is the GlobalID of the
referenced item.
Typically, such entries are used in PTS messages
that take refer further "causing" items along
with the actually affected item. An example
would be a bending that cannot be executed
because another bar is too close. This other bar
would then be a problem-causing item that can
be indicated with RefItem_Bar.

12345ABC

HltBarTIntvl Interval on Bar (given with theoretical length
positions) that indicate a section which should
be highlighted. This is typically used in PTS
feedbacks, for example to highlight a bending
where a problem occurs.
Since these are positional values on a Bar, it is
intended for Bar items, or items that are below
the Bar level.
The sequence in which the two interval limits
are specified may be ascending or descending;
the display client should choose a
representation in which it is recognizable which
is the first and which is the second interval limit.

1320;1420

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page88 / 102

3.14.4.1 Wire information

Contains a string that is composed of:

Field Description Example

D Diameter [mm] 12

Qlty Steel quality BS300

Mtl Coil-Info@Charge 83@C25408

Art Article Code of the Raw Material GD12345

Len Real length [mm] 5730

Kg Real weight [kg] 2.756
Example: D=12 Qlty=BS300 Mtl=99@C25408 Len=810 Kg=7.756 Art=GD12345
Note: this wire information is related to the consumed material (raw material)

3.14.4.2 Welding point information

Contains a string that is composed of:

Field Description Example

X Distance X to the beginning of the welded item
(e.g. girder or mesh) [mm]

322

Y Distance Y to the beginning of welded item
(e.g. girder or mesh) [mm]

257

I Welding current [mA] 8185

P Welding pressure [mBar] 9074

T Welding time [ms] 231

WH ID of welding head used 1
Example: X=0 I=9855.5 P=8861 T=221

3.14.4.3 Spacer information

Contains a string that is composed of:

Field Description Example

H Height [mm] 25

D Diameter [mm] 95

X X position
For „Slab“ entries the position is relative to the
element.

4234.9

Y Y position
For „Slab“ entries the position is relative to the
element.

122.7

Example: H=25 D=95 X=4234.9 Y=122.7

The string could also contain other internal fields which should have the Prefix “I_”.

The sequence of the fields is not relevant and not every field has to be inserted.

Also the sequences of the different welding points or wires are not bound and every entry is

facultative.

3.14.5 Examples of PTS messages

The detailed list of possible PTS messages will be defined by the machine manufacturer. Hence, the

following list should be merely read as an example only:

Examples of ItemType="Segment":

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page89 / 102

- Maximum segment length exceeded. [error]

- Segment too short. [error]

- Segment as L0 too short. [error]

- Bending too close as L0 too short. [error]

- Invalid bending angle. [error]

Examples of ItemType="Bar":

- Invalid bar diameter. [error]

- Bar with too few Welding points. [error]

- Bar too close to next bar. [error]

- Bar too close to next bar – corrected. [warning]

- Multiple bars aligned on same y; production will be slow. [hint]

Examples of ItemType="Steel":

- Invalid mesh size (too large). [error]

- Invalid mesh size (too small). [error]

- Mesh not transportable. [error]

- Mesh not transportable – corrected. [warning]

As these messages may not always be clearly visually relatable on the CAD monitor, the ItemType

should be identifiable from the Description text.

The following example shows the PXML document of a PTS feedback:

<?xml version="1.0" encoding="utf-8"?>

<PXML_Document xmlns="http://progress-m.com/ProgressXML/Version1">

 <DocInfo GlobalID="7C7E1FC5-0A46-48c5-A3B2-249D75B70BCF">

 <MajorVersion>1</MajorVersion>

 <MinorVersion>3</MinorVersion>

 <Comment>MSystem PTS 3.77.12.123, List 1, Params 2010-07-12</Comment>

 </DocInfo>

 <Feedback ItemType="Bar" GlobalID="12345">

 <MessageType>error</MessageType>

 <Code>MaxBarLen</Code>

 <Description Culture="en" Text="Maximum bar length exceeded."/>

 <Description Culture="de" Text="Max. Eisenlänge überschritten."/>

 </Feedback>

 <Feedback ItemType="Bar" GlobalID="2057">

 <MessageType>warning</MessageType>

 <Code>MinBarLen</Code>

 <Machine>BGM</Machine>

 <Description Culture="en" Text="Bar too short."/>

 <Description Culture="de" Text="Eisen zu kurz."/>

 </Feedback>

 <Feedback ItemType="Segment" GlobalID="5523">

 <MessageType>error</MessageType>

 <Code>DistCBar</Code>

 <Machine>BGM</Machine>

 <Description Culture="en" Text="Bending too near to crossing bar."/>

 <Description Culture="de" Text="Biegung zu nahe an querendem Eisen."/>

 <FbVal T="HltBarTIntvl" V="1320;1420"/>

 </Feedback>

</PXML_Document>

In the above example, we see 2 PTS Feedback messages: an error message for rebar "12345", and a

warning for rebar "2057". In this example, "MinBarLen" would be a warning code relating a rebar

that has been automatically extended by the machine; this rebar can thus be produced in the

automatically corrected form.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page90 / 102

Particular attention should be paid to the Comment entry in the DocInfosection: here, we should see

an identification of the PTS server from which it follows when its parameters were last balanced and

matched with the machines. Ideally, the PTS Client should visualize this information for the user.

3.14.6 Examples of Machine Return messages

The following example shows the PXML document of a Machine Return message that reports the

production of 2rebars.

<?xml version="1.0" encoding="utf-8"?>

<PXML_Document xmlns="http://progress-m.com/ProgressXML/Version1">

 <DocInfo GlobalID="7C7E1FC5-0A46-48c5-A3B2-249D75B70BCF">

 <MajorVersion>1</MajorVersion>

 <MinorVersion>3</MinorVersion>

 </DocInfo>

 <Feedback ItemType="Bar" GlobalID="2057">

 <PieceCount>3</PieceCount>

 <MaterialType>16A</MaterialType>

 <MaterialBatch>12345@AR177228C</MaterialBatch>

 <ProdDate>2010-07-30T09:06:03+02:00</ProdDate>

 </Feedback>

 <Feedback ItemType="Bar" GlobalID="2058">

 <PieceCount>1</PieceCount>

 <MaterialType>8</MaterialType>

 <MaterialBatch>12345@AR177228C</MaterialBatch>

 <ProdDate>2010-07-30T09:06:05+02:00</ProdDate>

 </Feedback>

</PXML_Document>

The following example shows the PXML document of a Machine Return message that reports the

production of 3 numbers of an element; here, it is also specified what material has been used and

how many kilograms were required.

<?xml version="1.0" encoding="utf-8"?>

<PXML_Document xmlns="http://progress-m.com/ProgressXML/Version1">

 <DocInfo GlobalID="7C7E1FC5-0A46-48c5-A3B2-249D75B70BCF">

 <MajorVersion>1</MajorVersion>

 <MinorVersion>3</MinorVersion>

 </DocInfo>

 <Feedback ItemType="Slab" GlobalID="12007">

 <PieceCount>3</PieceCount>

 <ProdDate>2010-07-30T09:06:03+02:00</ProdDate>

 </Feedback>

 <Feedback ItemType="Slab" GlobalID="12007">

 <MaterialType>10</MaterialType>

 <MaterialBatch>12345@AR177228C</MaterialBatch>

 <MaterialWeight>123.7</MaterialWeight>

 <ProdDate>2010-07-30T09:06:05+02:00</ProdDate>

 </Feedback>

 <Feedback ItemType="Slab" GlobalID="12007">

 <MaterialType>12</MaterialType>

 <MaterialBatch>12345@AR177228C</MaterialBatch>

 <MaterialWeight>162.4</MaterialWeight>

 <ProdDate>2010-07-30T09:06:05+02:00</ProdDate>

 </Feedback>

 <Feedback ItemType="Slab" GlobalID="12007">

 <MaterialType>KTS810</MaterialType>

 <MaterialWeight>98.7</MaterialWeight>

 <ProdDate>2010-07-30T09:06:05+02:00</ProdDate>

 </Feedback>

</PXML_Document>

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page91 / 102

Here, the feedback blocks all relate to the same Slab entry. The first feedback block specifies that 3

numbers were produced, the others the material consumption used for this Slab entry.

Please note: It is within the discretion of the applications to relate the feedbacks to coarse or fine

hierarchy levels. Thus, for example, the feedback can be made solely for the whole Order entry,

viz. to merely feed back the fact that this Order entry has been processed, and maybe to report how

much and what kind of material has been used in the process. Other applications, on the other hand,

might provide feedback on a Bar level. However, when feeding back different hierarchy levels, please

note that summable variables (such as the weight) must always be accumulative: if, for example,

Bar feedbacks are reported with a weight, and Slab feedbacks are reported with a weight, the reported

Slab weight should only describe the additional weight that is not included in the Bar feedbacks.

3.14.7 Examples of FbVal entries

3.14.7.1 Example Bar

<Feedback ItemType="Bar" GlobalID="12345">
 <ProdDate>2010-07-30T09:06:05+02:00</ProdDate>
 <Machine>MSR1:2</Machine>
 <FbVal T="OrdNo" V="AA00048386"/>
 <FbVal T="ElemNo" V="5522A"/>
 <FbVal T="Size" V="5740.4"/>
 <FbVal T="ProdTy" V="4"/>
 <FbVal T="NomTy" V="M10"/>
 <FbVal T="Wr" V="D=12 Qlty=BS300 Mtl=99@C25408 Len=810 Kg=2.756"/>
</Feedback>

3.14.7.2 Example Steel

<Feedback ItemType="Steel" GlobalID="12345">
 <ProdDate>2010-07-30T09:06:05+02:00</ProdDate>
 <Machine>MSystem:1</Machine>
 <FbVal T="OrdNo" V="AA00048386"/>
 <FbVal T="ElemNo" V="5522A"/>
 <FbVal T="Size" V="5740x1320"/>
 <FbVal T="ProdTy" V="4"/>
 <FbVal T="NomTy" V="M10"/>
 <FbVal T="Wr" V="D=12 Qlty=BS300 Mtl=99@C25408 Len=810 Kg=7.756"/>
 <FbVal T="Wr" V="D=16 Qlty=BS300 Mtl=83@C25408 Len=810 Kg=9.003"/>
</Feedback>

3.14.7.3 Example Slab

<Feedback ItemType="Slab" GlobalID="12345">
 <ProdDate>2010-07-30T09:06:05+02:00</ProdDate>
 <Machine>MeshSpacer:1</Machine>
 <FbVal T="OrdNo" V="AA00048386"/>
 <FbVal T="ElemNo" V="5522A"/>
 <FbVal T="Area" V="5.5"/>
 <FbVal T="Spacer" V="H=25 D=95 X=122.3 Y=122.7"/>
 <FbVal T="Spacer" V="H=25 D=95 X=122.3 Y=650.6"/>
 <FbVal T="Spacer" V="H=25 D=95 X=122.3 Y=1333.2"/>
 <FbVal T="Spacer" V="H=25 D=95 X=1508.7 Y=122.7"/>
 <FbVal T="Spacer" V="H=25 D=95 X=1508.7 Y=650.6"/>
 <FbVal T="Spacer" V="H=25 D=95 X=1508.7 Y=1333.2"/>
 <FbVal T="Spacer" V="H=25 D=95 X=3296.8 Y=122.7"/>
 <FbVal T="Spacer" V="H=25 D=95 X=3296.8 Y=650.6"/>
 <FbVal T="Spacer" V="H=25 D=95 X=3445.7 Y=1234.8"/>
</Feedback>

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page92 / 102

3.14.7.4 Example Girder

<Feedback ItemType="Girder" GlobalID="12345">
 <ProdDate>2010-07-30T09:06:05+02:00</ProdDate>
 <Machine>Versa1:2</Machine>
 <FbVal T="OrdNo" V="AA00048386"/>
 <FbVal T="ElemNo" V="5522A"/>
 <FbVal T="Size" V="800"/>
 <FbVal T="ProdTy" V="KT82012"/>
 <FbVal T="NomTy" V="KT82011"/>
 <FbVal T="Wr_Tp" V="D=12 Qlty=BS300 Mtl=99@C25408 Len=810 Kg=2.756"/>
 <FbVal T="Wr_B1" V="D=6 Qlty=BS300 Mtl=81@C25422 Len=850 Kg=0.689"/>
 <FbVal T="Wr_B2" V="D=6 Qlty=BS300 Mtl=80@C250 Len=850 Kg=0.689"/>
 <FbVal T="Wr_D1" V="D=5 Qlty=BS300 Mtl=83@C2555 Len=1212.7 Kg=0.95"/>
 <FbVal T="Wr_D2" V="D=5 Qlty=BS300 Mtl=94@C25476 Len=1212.7 Kg=0.95"/>
 <FbVal T="Wld_B1" V="X=0 I=9876.5 P=8862 T=230"/>
 <FbVal T="Wld_B2" V="X=0 I=9855.5 P=8861 T=221"/>
 <FbVal T="Wld_Tp" V="X=100 I=9855.5 P=8861 T=340"/>
 <FbVal T="Wld_B1" V="X=200 I=9876.5 P=8862 T=433"/>
 <FbVal T="Wld_B2" V="X=200 I=9855.5 P=8861 T=255"/>
 <FbVal T="Wld_Tp" V="X=295 I=9855.5 P=8861 T=340"/>
 <FbVal T="Wld_B1" V="X=410 I=9816.5 P=6862 T=221"/>
 <FbVal T="Wld_B2" V="X=410 I=9855.1 P=8861.6 T=533"/>
 <FbVal T="Wld_Tp" V="X=500 I=8153.5 P=9871 T=340"/>
 <FbVal T="Wld_B1" V="X=610 I=9816.5 P=8862 T=113.4"/>
 <FbVal T="Wld_B2" V="X=610 I=9855.1 P=7861.6 T=60"/>
 <FbVal T="Wld_Tp" V="X=700 I=9458.3 P=9848.4 T=340"/>
 <FbVal T="Wld_B1" V="X=790 I=7200.5 P=8862 T=222"/>
 <FbVal T="Wld_B2" V="X=791 I=9855.1 P=8761.6 T=221"/>
 <FbVal T="Wld_Tp_Target" V="T=340 I=10200 P=8750"/>
 <FbVal T="Wld_B1_Target" V="T=300 I=9800 P=6000"/>
 <FbVal T="Wld_B2_Target" V="T=300 I=9800 P=7000"/>
</Feedback>

3.14.8 Types of communication of PTS

There are many options for communication between the PTS Client and the PTS Server. However,

each PTS Server system should offer at least the options mentioned hereinafter.

3.14.8.1 Communication on file basis

The client and the server communicate via two directories, viz. a Request directory and a Feedback

directory. The server will watch the Request directory; whenever there is a file there, the file will be

read and deleted, and a response file will be provided in the Feedback directory that will have the

same name as the request file.

The server offers the option of defining any number of Request/Feedback directory pairs such that

there will be an own directory pair for each client.

Each Request/Feedback directory pair will correspond to a parameter block (production list,

production mode70 or similar) on the PTS server; it may thus happen that a PTS client will address

different Request/Feedback directory pairs.

70 An example of a production mode variant is as follows: for a PTS request, some client systems want the machines to

be considered as fully available at 100% (this requirement is typical of CAD PST clients); other PTS clients (such as

automatic transfer station view of the master computer, for example), on the other hand, want the machines to be taken

into consideration according to their current operating condition such that a deactivated bending head will be allowed

for, for example.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page93 / 102

3.14.8.2 Communication via web services

(The principle of PTS communication via web services is explained here. The complete formal

definition of the PXML Web API can be found at www.pxml.eu)

The client and the server communicate by means of web services.

Actually, there are two servers involved: the web server and the PTS server. The web server is a

kind of gateway that provides the web services to the final client. The web server itself routes the

PTS request to the underlying PTS servers.

Login

Communication has to be initiated by calling a login service in order to get an authentication token:

POST https://mydomain.org/Authentication/login

Authorization: Basic dXNlclhZOnBhc3N3b3JkQUJD

In this example “mydomain.org” is the address of the web service and

„dXNlclhZOnBhc3N3b3JkQUJD“ is a Base64 coded sequence of user:password (in the example

used here, the user is „userXY“ and the password is „passwordABC“).

The resulting authentication token is returned in the header of the http response. This token must be

used for all subsequent API calls by setting it in the header of the call (Token: {token}).

Put a PTS resource on the server (= send a PTS inquiry):

The client starts a PTS inquiry by putting a new resource on the web server:

POST https://mydomain.org/PTS

The PXML document of the inquiry is transmitted as byte array in the body of the POST statement.

In addition, a PtsServerPath is specified in order to identify the underlying PTS server that has to

process the inquiry. This is necessary since a single web server can have several underlying PTS

servers (each PTS server corresponding to a single machine configuration).

The body can be formatted in JSON or XML.

Example of a body in JSON:

{

 "PtsServerPath": "MSytem/List1",

 "PxmlDocument": "QEA="

}

(„QEA=“ is a sample of a Base64 coded byte array that should contain the PXML document).

The web service returns an alphanumerical TestID to the client.

Query the state of the PTS resource:

A dedicated GET web service returns the state of the PTS processing cycle:

GET https://mydomain.org/ PTS/{TestID}/Status

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page94 / 102

This statement returns a string with one of the following values:

• WaitingForFeedbackFromPtsServer: The PXML Document has been sent from the web

server to the PTS server and the web server is waiting for feedback.

• RequestNotSentToPtsServer: Sending the PXML Document from web server to PTS

server has failed.

• FeedbackAvailable: The PTS result is available.

• RequestToPtsServerTimedOut: The query from web server to PTS server timed out.

Reading the Feedbacks:

As soon as the feedback is available on the web server (state FeedbackAvailable), the client can

retrieve the result:

GET https://mydomain.org/ PTS/{TestID}/Feedback

This query returns a PXML feedback file as a byte array.

Delete a PTS resource on the web server:

If a PTS resource is no longer needed, it can be deleted by the following command:

DELETE https://mydomain.org/ PTS/{TestID}

Some servers may delete automatically old PTS resources after a certain time.

3.14.9 Types of communication of Machine Return

3.14.9.1 Communication on file basis

The machine continuously writes PXML files that are read and optionally deleted by the overriding

control system.

To facilitate evaluation for the reading system, the file names should reflect the sequence of the

written files (either by means of a time stamp in the file name, or of a consecutive ID in the file name

respectively).

It is at the discretion of the machine to generate an own file for each Feedback message, or to pack

several feedback messages into merely one file. However, once a file has been written, it must not

be modified anymore. That is to say, the machine must not open an existing file again, such as to add

more Feedback blocks, for example. At that point, this concept is clearly different from the rules of

the Unitechnik-Report-Files.

3.14.9.2 Communication via web services

See www.pxml.eu.

3.14.10 Parallel PTS servers and series of PTS servers

A complex production system may have several PTS servers. A mesh welding plant M, for instance,

may be followed by a mesh bending plant BG, and in parallel there may be a shuttering robot SPR:

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page95 / 102

The machine M and the machine BG are cascaded, in the sense that BG is supplied by M with data.

The control system ("Master PC") sends data in parallel to M and SPR.

The 3 machines are represented by 2 parallel PTS servers:

A PTS client should be able to query multiple parallel PTS servers.

The combination M/BG is viewed from the outside as one single PTS system: the transfer of PTS

feedback file from M to BG isn't visible from the outside. This linkage is necessary, since M may

slightly modify the production data, and BG needs to work with the modified data. In contrast, SPR

operates quite independently of M.

3.14.11 Filter, classify and sort PTS feedback messages

The PTS server provides only a rough classification of messages, specifying them as errors, warnings,

hints or information messages (See section 3.14.3.2). Since the server can serve multiple clients that

may have different tasks and concepts, it is not a server's task to filter, sort or classify PTS messages.

The PTS server reports everything from the perspective of the machine: it just reports which parts

can be produced, which cannot, and which can be produced with restrictions – the server doesn't

categorize messages as important or unimportant.

It is the responsibility of the client application to provide opportunities to display PTS messages in a

suitable way. This requires the client to have mechanisms to filter and sort PTS messages. Ideally,

there is also the opportunity to highlight some particular messages.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page96 / 102

4 Proposals for future extensions

See the German version of the document.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page97 / 102

5 Version History

Version 1.1:

New fields in the Bar section

• Bin: bin

Version 1.2:

New fields in the Bar section

• Pos: position

• Note: comment

• Machine: machine allocation

• BendingDevice: bending device

• NoAutoProd: replaces the AutomaticProductionfield (but is inverted)

New fields in the Girder section

• NoAutoProd: replaces the AutomaticProductionfield (but is inverted)

Fields in the Slab section have been removed

• LateralFormworkType

• LongitudinalFormworkType

• PlasterThicknessBottom

• PlasterQualityBottom

• UnitWeightBottom

• PlasterVolumeBottom

• PlasterThicknessTop

• PlasterQualityTop

• UnitWeightTop

• PlasterVolumeTop

New Outline fields

• Z-coordinate. replaces MountPartInstallHeight

• Height. replacesMountPartThickness.

Removed Outline fields

• MountPartThickness

• MountPartInstallPosX

• MountPartInstallPosY

• MountPartInstallHeight

• Area

New Outline type: lot

This is used to represent concrete lots. Also replaces the types of contour and cutout.

New Shape field: Cutout

If this is set, the respective Shape polygon is a cutout.

Removing the Concrete Layer elements

There are no Concrete Layer elements anymore as the concrete layer property is included in the Lo outline. For export to

UNICAM, a global concrete layer must be specified; here, the information of the first lot will be copied once again.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page98 / 102

The LayerType (identifier of the layer) is omitted and is not supported anymore.

Removing the contour or cutout Outline Types.

These Outline types are not required anymore as they are replaced by the lot Outline.

If there is an overall contour with several concrete layers in UNICAM, it will be split up into individual surface-congruent

lot elements.

Nee definition of the multi-layer elements.

Introduction of the MasterLayer flag; new definition of the multi-layer concept PXML.

Default values are defined uniformly for each data type.

All individual default assignments are thus invalid.

Version 1.2 – Later Additions

New fields in the Steel section (added on 2007-08-14)

• Steel.WeldingDensity: welding density.

• Steel.BorderStrength: strength of the steel mesh border.

New field in the Bar section (added on 2007-09-25)

• Bar.Ident: numerical ID for system-wide identification.

Nee fields in the Steel section (added on 2007-10-03)

• Steel.GenericInfo03…06: free information blocks (previously, there were only two (2) information blocks).

New Steel type (added on 2007-10-13)

• Steel.Type = "cage": cage for cage production facilities.

Alloc Table introduced (added on 2007-11-17)

• Tables "Alloc" and "Region": laying patterns for stirrups, guiding bars or lattice girders respectively.

SteelExt Table introduced (added on 2007-12-05)

• Table "SteelExt": Collection of application-specific supplementary data to the Steel block.

New field in the Girder section (added on 2008-07-21)

• Girder.Machine: Text field for specification of the machine or list.

New fields in the Girder section (added on 2008-11-28)

• Girder.Period: lattice girder period.

• Girder.PeriodOffset: distance of the first period low point from the beginning of the lattice girder.

GirderExt Table introduced (added on 2008-12-12)

• Table "GirderExt": Generic subtable to GirderRow.

New fields in the Girder section (added on 2009-02-18)

• Girder.GirderType: The meaning of this field has been defined more precisely. A thrust girder type has been

defined.

• Girder.MountingTyp: Mounting type for lattice girder.

New field in the Girder section (added on 2009-03-10)

• Girder.BottomFlangeDiameter: Bottom chord diameter in mm.

New field in the Girder section (added on 2009-03-19)

• Girder.TopExcess, Girder.BottomExcess: Excess length of the period rebar beyond the upper or bottom chord

respectively.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page99 / 102

Export to UNICAM for GirderExtRows (added on 2009-04-01)

• Export occurs via the lattice girder welding lines.

New field in the Product section (added on 2010-02-11)

• Product.TurnWidth: Assumed pallet width for double walls.

New field in the Order section (added on 2010-06-15)

• Order.DeliveryDate: Delivery date.

Global ID introduced (added on 2010-07-29)

• <Table>.GlobalID: Cross-system ID appearing in all PXML Tables.

• Bar.Ident is now obsolete, and has been removed from the standard.

ProdRot introduced (added on 2010-07-29)

• Steel.ProdRotX/Y/Z: Recommended rotation for production of reinforcement added.

• Slab.AngelOfRotation: is now obsolete, and has been removed from the standard.

PTS Specification (added on 2010-07-29)

• Production Test Service: Feedback from the inspection system.

• Machine Return: Feedback from the machine.

Clarification regarding the Character Encoding (added on 2010-07-29)

• Character-Encoding: The conventional established XML Encoding Rules will apply.

Proposals for extension (added on 2010-07-29)

• A separate chapter has been added that contains possible future extensions.

New MeshType values (added on 2010-07-29)

• 5 = cover mesh 2D; same as Type '1', but will be supplied and delivered together with Type '4'.

• 6 = cover mesh 3D; same as Type '3', but will be supplied and delivered together with Type '4'.

Nee fields in the Girder section (added on 2010-08-18)

• Girder.Width: Girder width in mm, between the two outermost points.

New fields in the Feedback section (added on 2010-11-25)

• MaterialWeight: Weight of the reported material.

New field in the Slab section (added on 2011-01-31)

• ExpositionClass: Exposition class.

New field in the Bar section (added on 2011-03-16)

• ShapeMode: Type or mode of representation of the bending shape.

With the introduction of this field, the issue of "schematic" representation has also been revised. This option, which has

been defined rather vaguely only so far, has been defined more precisely, and has been adjusted to the reality of existing

implementations in the process.

Extension of the definition of Steel.MeshType (added on 2011-04-22)

Besides specifying the Type as such, it should also be possible to specify type-specific details.

PXML specification now available in English, too (2011-06-03)

New field in the Feedback section (added on 2011-10-04)

• InfoValue: Additional information value.

New field in the DocInfo section (added on 2012-02-02)

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page100 / 102

• ConvertConventions: for declared non conformity with the specification.

Multi-layer handling has been simplified (2012-02-08)

• Outline.Layer: Has been added.

• Steel.Layer: Has been added.

• Slab.MasterLevel: Has been removed.

Parallel PTS servers and series of PTS servers (2012-09-14)

New field in the Feedback section (added on 2012-11-29)

• Machine: Identification of the Machine or PTS-Server originating the message.

Additional comments to conversion to and from BVBS (2013-06-10)

Additions for lattice girders with variable grid length (Added on 2013-11-10)

• PeriodOffset: No longer restricted to values between 0 and 200.

• Section: New sub-table for individual periods.

Mode table added (2013-22-25)

New field in the Product section (Added on 2013-11-27)

• RotationPosition.

Version 1.3 (2015-03-01)

In version 1.3 many key enhancements and even structural changes have been introduced. However, if all

compatibility recommendations are observed, this new version is fully backward compatible with PXML 1.2.

Older systems which have been made for version 1.2, can therefore work directly with the version 1.3 without

modification.

Replacement of Legacy Slab Fields with corresponding new Product fields

• See section 3.7.7.

Introduction of PXML Delegate Files

• See section 1.6.

Definition of an element's Reference Position

The recommendation of not using cutouts in mountparts has been removed

Introduction of 3D geometry for Outlines

• New Shape/SVertex fields DX, DY, RefHeight, see section 3.8.11.

• New Outline field ObjectID, see section 3.8.10.

New field in the Order section

• OrderArea, see section 3.3.1.

New field in the Product section

• ElementInfo, see section 3.6.

Clarifying additions for rules of double wall composition and project coordinates.

• For double wall composition see section 3.5.4.

• For project coordinates see section 3.5.8.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page101 / 102

Version 1.3 – Later Additions

2016-03-24

a) Definition of Simplified volume calculation. See section 3.8.11.

b) Clarification of the Outline.Name-Compatibility with UNICAM. See section 3.8.3.

c) Correction of the Include-Merge-Rules: Substructures of the delegate-files may coexist with substructures

from the include file. See section 1.6.

2016-04-06

a) New table FbVal as sub table of the Feedback table. See section 3.14.4.

b) Add examples for the usage of FbVal. See section 3.14.7.

c) New table ElemInfoVal as sub table of the ElemInfo table. See section 3.6.3.

d) New field F in Section-entry of the Girder table. See section 3.11.13.1.

e) New girder-types for Versagirder in the Girder table. See section 3.11.5.

2017-02-20

a) New mode directives: EnableProduction, EnableReinforcement, EnableProcurement. See section 3.2.5.

b) Additional fields for the transfer of the building structure: Structure, Building, SubStorey. See section 3.3.1.

c) New field ErpProjectUnit. See section 3.3.1.

d) New ElementInfo-types Concrete, ErpProjectUnit, PriceQty, PlanningQty. See section 3.6.2.

e) Unit specifier Unit in ElementInfo. See section 3.6.2.

f) Unit specifier U in ElemInfoVal. See section 3.6.3.

g) New tables OrderInfo and OrderInfoVal. See section 3.4

h) New fields in Girder table: DiagonalWireDiameter (section 3.11.4), ArticleNo (section 3.11.7)

i) Addition: Recommendation for structuring the StackNo, see section 3.5.7.

j) Additional FbVal-Types: Customer, Pos, ShiftID, ShiftStart. See section 3.14.4.

2017-07-07

a) New FbVal-Value „ProdArticle“ and new Wr-Field „Art“. See section 3.14.4.

2018-06-30

a) PTS Communication: TCP/IP socket communication has been replaced by web services communication. See

section 3.14.8.2.

b) Description of concept of using mountparts as “void” solids. See section 3.8.6.

c) Introduction of placement rotation for Slab. See section 3.7.2.

d) Introduction of Production Derectives for Slab. See section 3.7.3

e) Introduction of placement rotation for Outline. See section 3.8.1.

f) Introduction of full stacking geometry. See section 3.5.7.

g) The definition of Reference Position has been removed.

h) Product.RotationPosition has been declared as obsolete. See section 3.5.6.

i) Introduction of complex Include directives. See section 1.6.

j) Intrduced new FbVal types: CutBegin, CutEnd, WeldBegin, WeldEnd, BendBegin, BendEnd, PlaceBegin,

PlaceEnd. See section 3.14.4.

k) Intrduced new FbVal types: Wld, Wld_Targer, m2. See section 3.14.4.

l) Introduction of new fields for the welding point feedback: Y, WH. See section 3.14.4.2.

2018-07-03

a) Introduction of Simplified geometry representation. See section 3.7.8.

2019-02-28

a) Introduction of 3D-BF2D. See section 3.10.16.16.

progressXML – EN Version 1.3 Revision 2024-01-28

Copyright © 2005-2024 Progress Group. All rights reserved. Page102 / 102

b) Introduction of SVertex.Profile. See section 3.8.11.

c) Introduction of Product.StackID. See section 3.5.7.

d) Introduction of placement rotation for Steel. See section 3.9.1.

e) Additional clarification of the Girder.Section definition. See section 3.11.13.1.

2019-12-19

a) Additional clarification on the Girder.Section definition. See section 3.11.13.

b) Added recommendation for generation of GlobalIDs. See section 3.1.4.

c) Defined concept of Virtual Element. See section 3.5.2.

2021-01-08

a) Extended the WeldingPoint definition by specifying predefined WeldingPointType values and by adding the

field GroupID. See section 3.10.15.

b) Added more FbVal Type definitions. See section 3.14.4.

c) Detailed definition of SVertex.Profile for multilayer Slabs. See section 3.8.11.

2021-05-03

a) Clarification on SVertex.Profile definition. See section 3.8.11.

b) New standard tags for ElementInfo: AccAreaAdd, AccAreaExtAdd, ArchitecturalPart, TransportInfo. See

section 3.6.1.

c) New standard tags for ElemInfoVal: Name. See section 3.6.2.

2021-06-24

a) Correction of Slab.ProdRotX/Y/Z sequence. See section 3.7.3.

2022-11-17

a) Introduction of Slab.ProdX/Y/Z. See section 3.7.3.

b) Added WeldingPointType definitions -23, -29, -30. See section 3.10.15.

c) Clarifications on usage of Steel.Type, Steel.MeshType, Bar.ReinforcementType.

d) Added ProductTypes BM, CL, ST, MD, DT. See section 3.5.2

2023-03-23

a) Added new ProductType value InSitu. See section 3.5.2.

b) Added new PartType value 05. See section 3.7.1.

c) Correction of documentation error regarding standard DW Production Directives. See section 3.7.4

2024-01-28

a) Added new FbVal type HltBarTIntvl. See section 3.14.4.

b) new WeldingPoint type GrippingPoint. See section 3.10.15.3.

c) Bugfix in example 3 of section 3.10.16.11.

d) Introduced ObjectID for Steel items and refined description for ObjectIDs. See sections 3.8.10 and 3.9.11.

	Index:
	1 General
	1.1 Scope of application
	1.2 Default values
	1.3 Character encoding
	1.4 Versioning
	1.5 Compatibility with UNICAM
	1.6 PXML Delegate Files and PXML Include Files

	2 Structure overview
	3 Detail specifications
	3.1 Global ID
	3.1.1 Unambiguity of the GlobalID
	3.1.2 Special case: GlobalID of DocInfo Table
	3.1.3 Automatic generation of GlobalIDs
	3.1.4 Late generation of GlobalIDs

	3.2 DocInfo
	3.2.1 GlobalID
	3.2.2 Document Version
	3.2.3 Comment
	3.2.4 ConvertConventions
	3.2.5 Mode

	3.3 Order
	3.3.1 Order Information
	3.3.2 Import Source Information
	3.3.3 ApplicationName, ApplicationGUID, ApplicationVersion

	3.4 OrderInfo, OrderInfoVal
	3.5 Product (Element)
	3.5.1 ElementNo
	3.5.2 ProductType
	3.5.3 PieceCount
	3.5.4 Data transfer for double walls: TurnWidth, TotalThickness, DoubleWallsGap
	3.5.5 Comment
	3.5.6 RotationPosition
	3.5.7 Stacking Information
	3.5.8 Project Coordinates
	3.5.9 Supplementary Product Information

	3.6 ElementInfo
	3.6.1 Fields of ElementInfo entries
	3.6.2 Predefined ElementInfo types
	3.6.3 ElemInfoVal

	3.7 Slab (Element Part)
	3.7.1 PartType
	3.7.2 Geometric Slab Placement (X/Y/Z, RotX/Y/Z)
	3.7.3 Slab Production Directives (ProdX/Y/Z, ProdRotX/Y/Z)
	3.7.4 Geometric Placement and Production Directives for Double Walls
	3.7.5 Various Slab Information
	3.7.6 Multi-Layer Elements
	3.7.7 Legacy Slab Fields
	3.7.8 Simplified geometry representation

	3.8 Outline
	3.8.1 Geometric Outline Placement (X, Y, Z, RotX, RotY, RotZ)
	3.8.2 Height
	3.8.3 Name
	3.8.4 GenericInfo
	3.8.5 MountingInstruction (only for Mountpart)
	3.8.6 MountPartType, MountPartArticle (only for Mountpart)
	3.8.7 MountPartProperties (only for Mountpart)
	3.8.8 Concrete Properties (only for lots)
	3.8.9 Layer
	3.8.10 ObjectID
	3.8.11 Shape, SVertex

	3.9 Steel
	3.9.1 Geometric Steel Placement (X, Y, Z, RotX, RotY, RotZ)
	3.9.2 ToTurn (only for steel mesh)
	3.9.3 StopOnTurningSide (only for steel mesh)
	3.9.4 Name
	3.9.5 MeshType
	3.9.6 WeldingDensity (only for steel mesh)
	3.9.7 BorderStrength
	3.9.8 Generic Steel Info
	3.9.9 Steel Production Directices (ProdX/Y/Z, ProdRotX/Y/Z)
	3.9.10 Layer
	3.9.11 ObjectID

	3.10 Bar
	3.10.1 ShapeMode
	3.10.1.1 ShapeMode "realistic"
	3.10.1.2 ShapeMode "schematic"
	3.10.1.3 ShapeMode "polygonal"
	3.10.1.4 Automatic determination of ShapeMode and mixed representation

	3.10.2 ReinforcementType (reinforcement layers)
	3.10.2.1 Definition of reinforcement type
	3.10.2.2 How to set the reinforcement types
	3.10.2.3 Upper reinforcement layers

	3.10.3 SteelQuality
	3.10.4 PieceCount, Diameter, X, Y, Z
	3.10.5 RotZ
	3.10.6 ArticleNo
	3.10.7 NoAutoProd
	3.10.8 ExtIronWeight
	3.10.9 Bin
	3.10.10 Pos
	3.10.11 Note
	3.10.12 Machine
	3.10.13 BendingDevice
	3.10.14 Spacer
	3.10.14.1 Type
	3.10.14.2 Position

	3.10.15 WeldingPoint
	3.10.15.1 WeldingOutput
	3.10.15.2 Position
	3.10.15.3 WeldingPointType, WeldingPrgNo
	3.10.15.4 GroupID

	3.10.16 Segment
	3.10.16.1 Segment-Orientation (RotX, BendY)
	3.10.16.2 Segment-Length (L)
	3.10.16.3 Bending-Radius (R)
	3.10.16.4 External dimensions
	3.10.16.5 External length of segment
	3.10.16.6 Height and width of segment
	3.10.16.7 Rules for computing external dimensions
	3.10.16.8 Conventional external dimensions
	3.10.16.9 General computations for the bending radius
	3.10.16.10 Arcs and spirals in traditional "spiral form"
	3.10.16.11 Arcs in ordinary PXML form
	3.10.16.12 General computations for coordinate rotation
	3.10.16.13 Conversion from or to UNICAM
	3.10.16.14 Conversion from or to BVBS-BF2D
	3.10.16.15 Conversion from or to BVBS-BF3D
	3.10.16.16 Conversion from or to 3D-BF2D

	3.10.17 Canonical Bar representation

	3.11 Girder
	3.11.1 PieceCount, X, Y, Z, GirderName, Length, AngleToX
	3.11.2 NoAutoProd
	3.11.3 Height, TopExcess, BottomExcess
	3.11.4 Weight, TopFlangeDiameter, BottomFlangeDiameter
	3.11.5 GirderType
	3.11.6 MountingType
	3.11.7 ArticleNo
	3.11.8 Machine
	3.11.9 Period, PeriodOffset
	3.11.10 Width
	3.11.11 AnchorBar
	3.11.12 GirderExt
	3.11.12.1 Type = splicePos
	3.11.12.2 Type = FixingPos
	3.11.12.3 Type = GirderGripPos
	3.11.12.4 Type = MeshGripPos
	3.11.12.5 Type = SupportPos
	3.11.12.6 Export to UNICAM

	3.11.13 Section
	3.11.13.1 Fields in the Section table
	3.11.13.2 Assignment of the Section data
	Calculations for girder shapes

	3.12 Alloc
	3.12.1 GuidingBar
	3.12.2 Determination of direction excluding GuidingBar
	3.12.3 Region

	3.13 SteelExt
	3.14 Feedback
	3.14.1 Production Test Service (PTS)
	3.14.2 Machine Return
	3.14.3 Fields of the Feedback Block
	3.14.3.1 Feedback attributes
	3.14.3.2 Feedback fields

	3.14.4 FbVal
	3.14.4.1 Wire information
	3.14.4.2 Welding point information
	3.14.4.3 Spacer information

	3.14.5 Examples of PTS messages
	3.14.6 Examples of Machine Return messages
	3.14.7 Examples of FbVal entries
	3.14.7.1 Example Bar
	3.14.7.2 Example Steel
	3.14.7.3 Example Slab
	3.14.7.4 Example Girder

	3.14.8 Types of communication of PTS
	3.14.8.1 Communication on file basis
	3.14.8.2 Communication via web services
	Login
	Put a PTS resource on the server (= send a PTS inquiry):
	Query the state of the PTS resource:
	Reading the Feedbacks:
	Delete a PTS resource on the web server:

	3.14.9 Types of communication of Machine Return
	3.14.9.1 Communication on file basis
	3.14.9.2 Communication via web services

	3.14.10 Parallel PTS servers and series of PTS servers
	3.14.11 Filter, classify and sort PTS feedback messages

	4 Proposals for future extensions
	5 Version History

